Current Search: etalon (x)
-
-
Title
-
LOW NOISE, NARROW OPTICAL LINEWIDTH SEMICONDUCTOR-BASED OPTICAL COMB SOURCE AND LOW NOISE RF SIGNAL GENERATION.
-
Creator
-
Ozdur, Ibrahim, Delfyett, Peter, University of Central Florida
-
Abstract / Description
-
Recently optical frequency combs and low noise RF tones are drawing increased attention due to applications in spectroscopy, metrology, arbitrary waveform generation, optical signal processing etc. This thesis focuses on the generation of low noise RF tones and stabilized optical frequency combs. The optical frequency combs are generated by a semiconductor based external cavity mode-locked laser with a high finesse intracavity etalon. In order to get the lowest noise and broadest bandwidth...
Show moreRecently optical frequency combs and low noise RF tones are drawing increased attention due to applications in spectroscopy, metrology, arbitrary waveform generation, optical signal processing etc. This thesis focuses on the generation of low noise RF tones and stabilized optical frequency combs. The optical frequency combs are generated by a semiconductor based external cavity mode-locked laser with a high finesse intracavity etalon. In order to get the lowest noise and broadest bandwidth from the mode-locked laser, it is critical to know the free spectral range (FSR) of the etalon precisely. First the etalon FSR is measured by using the modified Pound-Drever-Hall (PDH) based method and obtained a resolution of 1 part in 106, which is 2 order of magnitude better than the standard PDH based method. After optimizing the cavity length, RF driving frequency and PDH cavity locking point, the mode-locked laser had an integrated timing jitter of 3 fs (1 Hz- 100 MHz) which is, to the best of our knowledge, the lowest jitter ever reported from a semiconductor based multigigahertz comb source. The mode-locked laser produces ~ 100 comb lines with 10 GHz spacing, a linewidth of ~500 Hz and 75 dB optical signal-to-noise ratio. The same system can also be driven as a regeneratively mode-locked laser with greatly improved noise performance. Another way of generating a low noise RF tone is using an opto-electronic oscillator which uses an optical cavity as a high Q element. Due to the harmonic nature of OEOs, a mode selection element is necessary. Standard OEOs use an RF filter having drawbacks such as broad pass band, high loss, and high thermal noise. In our work, a novel optoelectronic scheme which uses an optical filter (Fabry-Perot etalon) as the mode filter instead of an RF filter is demonstrated. This method has the advantage of having ultra-narrow filtering bandwidths ( ~ 10 kHz for a 10 GHz FSR and 106 finesse) and an extremely low noise RF signal. Experimental demonstration of the proposed method resulted in a 5-10 dB decrease of the OEO noise compared to the conventional OEO setup. Also, by modifying the etalon-based OEO, and using single side band modulation, an optically tunable optoelectronic oscillator is achieved with 10-20 dB lower noise than dual side band modulation. Noise properties of the OEO as a function of optical frequency detuning is also analyzed theoretically and the results are in agreement with experimental results.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0003573, ucf:48917
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003573
-
-
Title
-
LOW NOISE AND LOW REPETITION RATE SEMICONDUCTOR-BASED MODE-LOCKED LASERS.
-
Creator
-
Mnaridis, Dimitrios, Delfyett, Peter, University of Central Florida
-
Abstract / Description
-
The topic of this dissertation is the development of low repetition rate and low noise semiconductor-based laser sources with a focus on linearly chirped pulse laser sources. In the past decade chirped optical pulses have found a plethora of applications such as photonic analog-to-digital conversion, optical coherence tomography, laser ranging, etc. This dissertation analyzes the aforementioned applications of linearly chirped pulses and their technical requirements, as well as the...
Show moreThe topic of this dissertation is the development of low repetition rate and low noise semiconductor-based laser sources with a focus on linearly chirped pulse laser sources. In the past decade chirped optical pulses have found a plethora of applications such as photonic analog-to-digital conversion, optical coherence tomography, laser ranging, etc. This dissertation analyzes the aforementioned applications of linearly chirped pulses and their technical requirements, as well as the performance of previously demonstrated chirped pulse laser sources. Moreover, the focus is shifted to a specific application of the linearly chirped pulses, time-stretched photonic analog-to-digital conversion (TS ADC). The challenges of surpassing the speeds of current electronic converters are discussed, while the need for low noise linearly chirped pulse lasers becomes apparent for the realization of TS ADC. The experimental research addresses the topic of low noise chirped pulse generation in three distinct ways. First, a chirped pulse (Theta) laser with an intra-cavity Fabry-Perot etalon and a long-term referencing mechanism is developed that results in the reduction of the pulse-to-pulse energy noise. Noise suppression of >15 times is demonstrated. Moreover, an optical frequency comb with spacing equal to the repetition rate (H100 MHz) is generated using the etalon, resulting in the first reported demonstration of a system operating in the sub-GHz regime based on semiconductor gain. The path for the development of the Theta laser was laid by the precise characterization of the etalon used in this laser cavity design. A narrow linewidth laser is used in conjunction with an acousto-optic modulator externally swept for measuring the etalon's free spectral range with a sub-Hz precision, or 10 parts per billion. Furthermore, the measurement of the etalon long-term drift and birefringence lead to the development of a modified intra-cavity Hansch-Couillaud locking mechanism for the Theta laser. Moreover, an external feed-forward system was demonstrated that aimed at increasing the temporal/spectral uniformity of the optical pulses. A complete characterization of the system is demonstrated. On a different series of experiments, the pulses emitted by an ultra-low noise but high repetition rate mode-locked laser were demultiplexed resulting in a low repetition rate pulse train. Experimental investigation of the noise properties of the laser proved that they are preserved during the demultiplexing process. The noise of the electrical gate used in this experiment is also investigated which led into the development of a more profound understanding of the electrical noise of periodical pulses and a mechanism of measuring their noise. The appendices in this dissertation provide additional material used for the realization of the main research focus of the dissertation. Measurements of the group delay of the etalon used in the Theta laser are presented in order to demonstrate the limiting factors for the development of this cavity design. The description of a balancing routine is presented, that was used for expanding the dynamic range of intra-cavity active variable delay. At last, the appendix presents the calculations regarding the contribution of various parameters in the limitations of analog-to-digital conversion.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0003874, ucf:48741
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003874