Current Search: evolutionary computation (x)
View All Items
- Title
- A NEAT APPROACH TO GENETIC PROGRAMMING.
- Creator
-
Rodriguez, Adelein, Wu, Annie, University of Central Florida
- Abstract / Description
-
The evolution of explicitly represented topologies such as graphs involves devising methods for mutating, comparing and combining structures in meaningful ways and identifying and maintaining the necessary topological diversity. Research has been conducted in the area of the evolution of trees in genetic programming and of neural networks and some of these problems have been addressed independently by the different research communities. In the domain of neural networks, NEAT (Neuroevolution...
Show moreThe evolution of explicitly represented topologies such as graphs involves devising methods for mutating, comparing and combining structures in meaningful ways and identifying and maintaining the necessary topological diversity. Research has been conducted in the area of the evolution of trees in genetic programming and of neural networks and some of these problems have been addressed independently by the different research communities. In the domain of neural networks, NEAT (Neuroevolution of Augmenting Topologies) has shown to be a successful method for evolving increasingly complex networks. This system's success is based on three interrelated elements: speciation, marking of historical information in topologies, and initializing search in a small structures search space. This provides the dynamics necessary for the exploration of diverse solution spaces at once and a way to discriminate between different structures. Although different representations have emerged in the area of genetic programming, the study of the tree representation has remained of interest in great part because of its mapping to programming languages and also because of the observed phenomenon of unnecessary code growth or bloat which hinders performance. The structural similarity between trees and neural networks poses an interesting question: Is it possible to apply the techniques from NEAT to the evolution of trees and if so, how does it affect performance and the dynamics of code growth? In this work we address these questions and present analogous techniques to those in NEAT for genetic programming.
Show less - Date Issued
- 2007
- Identifier
- CFE0001971, ucf:47451
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001971
- Title
- Harmony Oriented Architecture.
- Creator
-
Martin, Kyle, Hua, Kien, Wu, Annie, Heinrich, Mark, University of Central Florida
- Abstract / Description
-
This thesis presents Harmony Oriented Architecture: a novel architectural paradigm that applies the principles of Harmony Oriented Programming to the architecture of scalable and evolvable distributed systems. It is motivated by research on Ultra Large Scale systems that has revealed inherent limitations in human ability to design large-scale software systems that can only be overcome through radical alternatives to traditional object-oriented software engineering practice that simplifies the...
Show moreThis thesis presents Harmony Oriented Architecture: a novel architectural paradigm that applies the principles of Harmony Oriented Programming to the architecture of scalable and evolvable distributed systems. It is motivated by research on Ultra Large Scale systems that has revealed inherent limitations in human ability to design large-scale software systems that can only be overcome through radical alternatives to traditional object-oriented software engineering practice that simplifies the construction of highly scalable and evolvable system.HOP eschews encapsulation and information hiding, the core principles of object- oriented design, in favor of exposure and information sharing through a spatial abstraction. This helps to avoid the brittle interface dependencies that impede the evolution of object-oriented software. HOA extends these concepts to distributed systems resulting in an architecture in which application components are represented by objects in a spatial database and executed in strict isolation using an embedded application server. Application components store their state entirely in the database and interact solely by diffusing data into a space for proximate components to observe. This architecture provides a high degree of decoupling, isolation, and state exposure allowing highly scalable and evolvable applications to be built.A proof-of-concept prototype of a non-distributed HOA middleware platform supporting JavaScript application components is implemented and evaluated. Results show remarkably good performance considering that little effort was made to optimize the implementation.
Show less - Date Issued
- 2011
- Identifier
- CFE0004480, ucf:49298
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004480
- Title
- THE PROTEOMICS APPROACH TO EVOLUTIONARY COMPUTATION: AN ANALYSIS OF PROTEOME-BASED LOCATION INDEPENDENT REPRESENTATIONS BASEDON THE PROPORTIONAL GENETIC ALGORITHM.
- Creator
-
Garibay, Ivan, Wu, Annie, University of Central Florida
- Abstract / Description
-
As the complexity of our society and computational resources increases, so does the complexity of the problems that we approach using evolutionary search techniques. There are recent approaches to deal with the problem of scaling evolutionary methods to cope with highly complex difficult problems. Many of these approaches are biologically inspired and share an underlying principle: a problem representation based on basic representational building blocks that interact and self-organize into...
Show moreAs the complexity of our society and computational resources increases, so does the complexity of the problems that we approach using evolutionary search techniques. There are recent approaches to deal with the problem of scaling evolutionary methods to cope with highly complex difficult problems. Many of these approaches are biologically inspired and share an underlying principle: a problem representation based on basic representational building blocks that interact and self-organize into complex functions or designs. The observation from the central dogma of molecular biology that proteins are the basic building blocks of life and the recent advances in proteomics on analysis of structure, function and interaction of entire protein complements, lead us to propose a unifying framework of thought for these approaches: the proteomics approach. This thesis propose to investigate whether the self-organization of protein analogous structures at the representation level can increase the degree of complexity and ``novelty'' of solutions obtainable using evolutionary search techniques. In order to do so, we identify two fundamental aspects of this transition: (1) proteins interact in a three dimensional medium analogous to a multiset; and (2) proteins are functional structures. The first aspect is foundational for understanding of the second. This thesis analyzes the first aspect. It investigates the effects of using a genome to proteome mapping on evolutionary computation. This analysis is based on a genetic algorithm (GA) with a string to multiset mapping that we call the proportional genetic algorithm (PGA), and it focuses on the feasibility and effectiveness of this mapping. This mapping leads to a fundamental departure from typical EC methods: using a multiset of proteins as an intermediate mapping results in a \emph{completely location independent} problem representation where the location of the genes in a genome has no effect on the fitness of the solutions. Completely location independent representations, by definition, do not suffer from traditional EC hurdles associated with the location of the genes or positional effect in a genome. Such representations have the ability to self-organize into a genomic structure that appears to favor positive correlations between form and quality of represented solutions. Completely location independent representations also introduce new problems of their own such as the need for large alphabets of symbols and the theoretical need for larger representation spaces than traditional approaches. Overall, these representations perform as well or better than traditional representations and they appear to be particularly good for the class of problems involving proportions or multisets. This thesis concludes that the use of protein analogous structures as an intermediate representation in evolutionary computation is not only feasible but in some cases advantageous. In addition, it lays the groundwork for further research on proteins as functional self-organizing structures capable of building increasingly complex functionality, and as basic units of problem representation for evolutionary computation.
Show less - Date Issued
- 2004
- Identifier
- CFE0000311, ucf:46307
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000311
- Title
- ALAYZING THE EFFECTS OF MODULARITY ON SEARCH SPACES.
- Creator
-
Garibay, Ozlem, Wu, Annie, University of Central Florida
- Abstract / Description
-
We are continuously challenged by ever increasing problem complexity and the need to develop algorithms that can solve complex problems and solve them within a reasonable amount of time. Modularity is thought to reduce problem complexity by decomposing large problems into smaller and less complex subproblems. In practice, introducing modularity into evolutionary algorithm representations appears to improve search performance; however, how and why modularity improves performance is not well...
Show moreWe are continuously challenged by ever increasing problem complexity and the need to develop algorithms that can solve complex problems and solve them within a reasonable amount of time. Modularity is thought to reduce problem complexity by decomposing large problems into smaller and less complex subproblems. In practice, introducing modularity into evolutionary algorithm representations appears to improve search performance; however, how and why modularity improves performance is not well understood. In this thesis, we seek to better understand the effects of modularity on search. In particular, what are the effects of module creation on the search space structure and how do these structural changes affect performance? We define a theoretical and empirical framework to study modularity in evolutionary algorithms. Using this framework, we provide evidence of the following. First, not all types of modularity have an effect on search. We can have highly modular spaces that in essence are equivalent to simpler non-modular spaces. This is the case, because these spaces achieve higher degree of modularity without changing the fundamental structure of the search space. Second, for the cases when modularity actually has an effect on the fundamental structure of the search space, if left without guidance, it would only crowd and complicate the space structure resulting in a harder space for most search algorithms. Finally, we have the case when modularity not only has an effect in the search space structure, but most importantly, module creation can be guided by problem domain knowledge. When this knowledge can be used to estimate the value of a module in terms of its contribution toward building the solution, then modularity is extremely effective. It is in this last case that creating high value modules or low value modules has a direct and decisive impact on performance. The results presented in this thesis help to better understand, in a principled way, the effects of modularity on search. Better understanding the effects of modularity on search is a step forward in the larger issue of evolutionary search applied to increasingly complex problems.
Show less - Date Issued
- 2008
- Identifier
- CFE0002490, ucf:47680
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002490
- Title
- Quality Diversity: Harnessing Evolution to Generate a Diversity of High-Performing Solutions.
- Creator
-
Pugh, Justin, Stanley, Kenneth, Wu, Annie, Sukthankar, Gita, Garibay, Ivan, University of Central Florida
- Abstract / Description
-
Evolution in nature has designed countless solutions to innumerable interconnected problems, giving birth to the impressive array of complex modern life observed today. Inspired by this success, the practice of evolutionary computation (EC) abstracts evolution artificially as a search operator to find solutions to problems of interest primarily through the adaptive mechanism of survival of the fittest, where stronger candidates are pursued at the expense of weaker ones until a solution of...
Show moreEvolution in nature has designed countless solutions to innumerable interconnected problems, giving birth to the impressive array of complex modern life observed today. Inspired by this success, the practice of evolutionary computation (EC) abstracts evolution artificially as a search operator to find solutions to problems of interest primarily through the adaptive mechanism of survival of the fittest, where stronger candidates are pursued at the expense of weaker ones until a solution of satisfying quality emerges. At the same time, research in open-ended evolution (OEE) draws different lessons from nature, seeking to identify and recreate processes that lead to the type of perpetual innovation and indefinitely increasing complexity observed in natural evolution. New algorithms in EC such as MAP-Elites and Novelty Search with Local Competition harness the toolkit of evolution for a related purpose: finding as many types of good solutions as possible (rather than merely the single best solution). With the field in its infancy, no empirical studies previously existed comparing these so-called quality diversity (QD) algorithms. This dissertation (1) contains the first extensive and methodical effort to compare different approaches to QD (including both existing published approaches as well as some new methods presented for the first time here) and to understand how they operate to help inform better approaches in the future.It also (2) introduces a new technique for encoding neural networks for evolution with indirect encoding that contain multiple sensory or output modalities.Further, it (3) explores the idea that QD can act as an engine of open-ended discovery by introducing an expressive platform called Voxelbuild where QD algorithms continually evolve robots that stack blocks in new ways. A culminating experiment (4) is presented that investigates evolution in Voxelbuild over a very long timescale. This research thus stands to advance the OEE community's desire to create and understand open-ended systems while also laying the groundwork for QD to realize its potential within EC as a means to automatically generate an endless progression of new content in real-world applications.
Show less - Date Issued
- 2019
- Identifier
- CFE0007513, ucf:52638
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007513
- Title
- Multi-Modal Interfaces for Sensemaking of Graph-Connected Datasets.
- Creator
-
Wehrer, Anthony, Hughes, Charles, Wisniewski, Pamela, Pattanaik, Sumanta, Specht, Chelsea, Lisle, Curtis, University of Central Florida
- Abstract / Description
-
The visualization of hypothesized evolutionary processes is often shown through phylogenetic trees. Given evolutionary data presented in one of several widely accepted formats, software exists to render these data into a tree diagram. However, software packages commonly in use by biologists today often do not provide means to dynamically adjust and customize these diagrams for studying new hypothetical relationships, and for illustration and publication purposes. Even where these options are...
Show moreThe visualization of hypothesized evolutionary processes is often shown through phylogenetic trees. Given evolutionary data presented in one of several widely accepted formats, software exists to render these data into a tree diagram. However, software packages commonly in use by biologists today often do not provide means to dynamically adjust and customize these diagrams for studying new hypothetical relationships, and for illustration and publication purposes. Even where these options are available, there can be a lack of intuitiveness and ease-of-use. The goal of our research is, thus, to investigate more natural and effective means of sensemaking of the data with different user input modalities. To this end, we experimented with different input modalities, designing and running a series of prototype studies, ultimately focusing our attention on pen-and-touch. Through several iterations of feedback and revision provided with the help of biology experts and students, we developed a pen-and-touch phylogenetic tree browsing and editing application called PhyloPen. This application expands on the capabilities of existing software with visualization techniques such as overview+detail, linked data views, and new interaction and manipulation techniques using pen-and-touch. To determine its impact on phylogenetic tree sensemaking, we conducted a within-subject comparative summative study against the most comparable and commonly used state-of-the-art mouse-based software system, Mesquite. Conducted with biology majors at the University of Central Florida, each used both software systems on a set number of exercise tasks of the same type. Determining effectiveness by several dependent measures, the results show PhyloPen was significantly better in terms of usefulness, satisfaction, ease-of-learning, ease-of-use, and cognitive load and relatively the same in variation of completion time. These results support an interaction paradigm that is superior to classic mouse-based interaction, which could have the potential to be applied to other communities that employ graph-based representations of their problem domains.
Show less - Date Issued
- 2019
- Identifier
- CFE0007872, ucf:52788
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007872
- Title
- Evolution Through the Search for Novelty.
- Creator
-
Lehman, Joel, Stanley, Kenneth, Gonzalez, Avelino, Wiegand, Rudolf, Hoffman, Eric, University of Central Florida
- Abstract / Description
-
I present a new approach to evolutionary search called novelty search, wherein only behavioral novelty is rewarded, thereby abstracting evolution as a search for novel forms. This new approach contrasts with the traditional approach of rewarding progress towards the objective through an objective function. Although they are designed to light a path to the objective, objective functions can instead deceive search into converging to dead ends called local optima.As a significant problem in...
Show moreI present a new approach to evolutionary search called novelty search, wherein only behavioral novelty is rewarded, thereby abstracting evolution as a search for novel forms. This new approach contrasts with the traditional approach of rewarding progress towards the objective through an objective function. Although they are designed to light a path to the objective, objective functions can instead deceive search into converging to dead ends called local optima.As a significant problem in evolutionary computation, deception has inspired many techniques designed to mitigate it. However, nearly all such methods are still ultimately susceptible to deceptive local optima because they still measure progress with respect to the objective, which this dissertation will show is often a broken compass. Furthermore, although novelty search completely abandons the objective, it counterintuitively often outperforms methods that search directly for the objective in deceptive tasks and can induce evolutionary dynamics closer in spirit to natural evolution. The main contributions are to (1) introduce novelty search, an example of an effective search method that is not guided by actively measuring or encouraging objective progress; (2) validate novelty search by applying it to biped locomotion; (3) demonstrate novelty search's benefits for evolvability (i.e. the abilityof an organism to further evolve) in a variety of domains; (4) introduce an extension of novelty search called minimal criteria novelty search that brings a new abstraction of natural evolution to evolutionary computation (i.e. evolution as a search for many ways of meeting the minimal criteria of life); (5) present a second extension of novelty search called novelty search with local competition that abstracts evolution instead as a process driven towards diversity with competition playing a subservient role; and (6) evolve a diversity of functional virtual creatures in a single run as a culminating application of novelty search with local competition. Overall these contributions establish novelty search as an important new research direction for the field of evolutionary computation.
Show less - Date Issued
- 2012
- Identifier
- CFE0004398, ucf:49390
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004398
- Title
- MULTIAGENT LEARNING THROUGH INDIRECT ENCODING.
- Creator
-
D'Ambrosio, David, Stanley, Kenneth, University of Central Florida
- Abstract / Description
-
Designing a system of multiple, heterogeneous agents that cooperate to achieve a common goal is a difficult task, but it is also a common real-world problem. Multiagent learning addresses this problem by training the team to cooperate through a learning algorithm. However, most traditional approaches treat multiagent learning as a combination of multiple single-agent learning problems. This perspective leads to many inefficiencies in learning such as the problem of reinvention, whereby...
Show moreDesigning a system of multiple, heterogeneous agents that cooperate to achieve a common goal is a difficult task, but it is also a common real-world problem. Multiagent learning addresses this problem by training the team to cooperate through a learning algorithm. However, most traditional approaches treat multiagent learning as a combination of multiple single-agent learning problems. This perspective leads to many inefficiencies in learning such as the problem of reinvention, whereby fundamental skills and policies that all agents should possess must be rediscovered independently for each team member. For example, in soccer, all the players know how to pass and kick the ball, but a traditional algorithm has no way to share such vital information because it has no way to relate the policies of agents to each other.In this dissertation a new approach to multiagent learning that seeks to address these issues is presented. This approach, called multiagent HyperNEAT, represents teams as a pattern of policies rather than individual agents. The main idea is that an agent's location within a canonical team layout (such as a soccer team at the start of a game) tends to dictate its role within that team, called the policy geometry. For example, as soccer positions move from goal to center they become more offensive and less defensive, a concept that is compactly represented as a pattern. The first major contribution of this dissertation is a new method for evolving neural network controllers called HyperNEAT, which forms the foundation of the second contribution and primary focus of this work, multiagent HyperNEAT. Multiagent learning in this dissertation is investigated in predator-prey, room-clearing, and patrol domains, providing a real-world context for the approach. Interestingly, because the teams in multiagent HyperNEAT are represented as patterns they can scale up to an infinite number of multiagent policies that can be sampled from the policy geometry as needed. Thus the third contribution is a method for teams trained with multiagent HyperNEAT to dynamically scale their size without further learning. Fourth, the capabilities to both learn and scale in multiagent HyperNEAT are compared to the traditional multiagent SARSA(lamba) approach in a comprehensive study. The fifth contribution is a method for efficiently learning and encoding multiple policies for each agent on a team to facilitate learning in multi-task domains. Finally, because there is significant interest in practical applications of multiagent learning, multiagent HyperNEAT is tested in a real-world military patrolling application with actual Khepera III robots. The ultimate goal is to provide a new perspective on multiagent learning and to demonstrate the practical benefits of training heterogeneous, scalable multiagent teams through generative encoding.
Show less - Date Issued
- 2011
- Identifier
- CFE0003661, ucf:48812
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003661
- Title
- Complementary Layered Learning.
- Creator
-
Mondesire, Sean, Wu, Annie, Wiegand, Rudolf, Sukthankar, Gita, Proctor, Michael, University of Central Florida
- Abstract / Description
-
Layered learning is a machine learning paradigm used to develop autonomous robotic-based agents by decomposing a complex task into simpler subtasks and learns each sequentially. Although the paradigm continues to have success in multiple domains, performance can be unexpectedly unsatisfactory. Using Boolean-logic problems and autonomous agent navigation, we show poor performance is due to the learner forgetting how to perform earlier learned subtasks too quickly (favoring plasticity) or...
Show moreLayered learning is a machine learning paradigm used to develop autonomous robotic-based agents by decomposing a complex task into simpler subtasks and learns each sequentially. Although the paradigm continues to have success in multiple domains, performance can be unexpectedly unsatisfactory. Using Boolean-logic problems and autonomous agent navigation, we show poor performance is due to the learner forgetting how to perform earlier learned subtasks too quickly (favoring plasticity) or having difficulty learning new things (favoring stability). We demonstrate that this imbalance can hinder learning so that task performance is no better than that of a sub-optimal learning technique, monolithic learning, which does not use decomposition. Through the resulting analyses, we have identified factors that can lead to imbalance and their negative effects, providing a deeper understanding of stability and plasticity in decomposition-based approaches, such as layered learning.To combat the negative effects of the imbalance, a complementary learning system is applied to layered learning. The new technique augments the original learning approach with dual storage region policies to preserve useful information from being removed from an agent's policy prematurely. Through multi-agent experiments, a 28% task performance increase is obtained with the proposed augmentations over the original technique.
Show less - Date Issued
- 2014
- Identifier
- CFE0005213, ucf:50626
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005213
- Title
- Functional Scaffolding for Musical Composition: A New Approach in Computer-Assisted Music Composition.
- Creator
-
Hoover, Amy, Stanley, Kenneth, Wu, Annie, Laviola II, Joseph, Anderson, Thaddeus, University of Central Florida
- Abstract / Description
-
While it is important for systems intended to enhance musical creativity to define and explore musical ideas conceived by individual users, many limit musical freedom by focusing on maintaining musical structure, thereby impeding the user's freedom to explore his or her individual style. This dissertation presents a comprehensive body of work that introduces a new musical representation that allows users to explore a space of musical rules that are created from their own melodies. This...
Show moreWhile it is important for systems intended to enhance musical creativity to define and explore musical ideas conceived by individual users, many limit musical freedom by focusing on maintaining musical structure, thereby impeding the user's freedom to explore his or her individual style. This dissertation presents a comprehensive body of work that introduces a new musical representation that allows users to explore a space of musical rules that are created from their own melodies. This representation, called functional scaffolding for musical composition (FSMC), exploits a simple yet powerful property of multipart compositions: The pattern of notes and rhythms in different instrumental parts of the same song are functionally related. That is, in principle, one part can be expressed as a function of another. Music in FSMC is represented accordingly as a functional relationship between an existing human composition, or scaffold, and an additional generated voice. This relationship is encoded by a type of artificial neural network called a compositional pattern producing network (CPPN). A human user without any musical expertise can then explore how these additional generated voices should relate to the scaffold through an interactive evolutionary process akin to animal breeding. The utility of this insight is validated by two implementations of FSMC called NEAT Drummer and MaestroGenesis, that respectively help users tailor drum patterns and complete multipart arrangements from as little as a single original monophonic track. The five major contributions of this work address the overarching hypothesis in this dissertation that functional relationships alone, rather than specialized music theory, are sufficient for generating plausible additional voices. First, to validate FSMC and determine whether plausible generated voices result from the human-composed scaffold or intrinsic properties of the CPPN, drum patterns are created with NEAT Drummer to accompany several different polyphonic pieces. Extending the FSMC approach to generate pitched voices, the second contribution reinforces the importance of functional transformations through quality assessments that indicate that some partially FSMC-generated pieces are indistinguishable from those that are fully human. While the third contribution focuses on constructing and exploring a space of plausible voices with MaestroGenesis, the fourth presents results from a two-year study where students discuss their creative experience with the program. Finally, the fifth contribution is a plugin for MaestroGenesis called MaestroGenesis Voice (MG-V) that provides users a more natural way to incorporate MaestroGenesis in their creative endeavors by allowing scaffold creation through the human voice. Together, the chapters in this dissertation constitute a comprehensive approach to assisted music generation, enabling creativity without the need for musical expertise.
Show less - Date Issued
- 2014
- Identifier
- CFE0005350, ucf:50495
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005350
- Title
- Novelty-Assisted Interactive Evolution of Control Behaviors.
- Creator
-
Woolley, Brian, Stanley, Kenneth, Hughes, Charles, Gonzalez, Avelino, Wu, Annie, Hancock, Peter, University of Central Florida
- Abstract / Description
-
The field of evolutionary computation is inspired by the achievements of natural evolution, in which there is no final objective. Yet the pursuit of objectives is ubiquitous in simulated evolution because evolutionary algorithms that can consistently achieve established benchmarks are lauded as successful, thus reinforcing this paradigm. A significant problem is that such objective approaches assume that intermediate stepping stones will increasingly resemble the final objective when in fact...
Show moreThe field of evolutionary computation is inspired by the achievements of natural evolution, in which there is no final objective. Yet the pursuit of objectives is ubiquitous in simulated evolution because evolutionary algorithms that can consistently achieve established benchmarks are lauded as successful, thus reinforcing this paradigm. A significant problem is that such objective approaches assume that intermediate stepping stones will increasingly resemble the final objective when in fact they often do not. The consequence is that while solutions may exist, searching for such objectives may not discover them. This problem with objectives is demonstrated through an experiment in this dissertation that compares how images discovered serendipitously during interactive evolution in an online system called Picbreeder cannot be rediscovered when they become the final objective of the very same algorithm that originally evolved them. This negative result demonstrates that pursuing an objective limits evolution by selecting offspring only based on the final objective. Furthermore, even when high fitness is achieved, the experimental results suggest that the resulting solutions are typically brittle, piecewise representations that only perform well by exploiting idiosyncratic features in the target. In response to this problem, the dissertation next highlights the importance of leveraging human insight during search as an alternative to articulating explicit objectives. In particular, a new approach called novelty-assisted interactive evolutionary computation (NA-IEC) combines human intuition with a method called novelty search for the first time to facilitate the serendipitous discovery of agent behaviors. In this approach, the human user directs evolution by selecting what is interesting from the on-screen population of behaviors. However, unlike in typical IEC, the user can then request that the next generation be filled with novel descendants, as opposed to only the direct descendants of typical IEC. The result of such an approach, unconstrained by a priori objectives, is that it traverses key stepping stones that ultimately accumulate meaningful domain knowledge.To establishes this new evolutionary approach based on the serendipitous discovery of key stepping stones during evolution, this dissertation consists of four key contributions: (1) The first contribution establishes the deleterious effects of a priori objectives on evolution. The second (2) introduces the NA-IEC approach as an alternative to traditional objective-based approaches. The third (3) is a proof-of-concept that demonstrates how combining human insight with novelty search finds solutions significantly faster and at lower genomic complexities than fully-automated processes, including pure novelty search, suggesting an important role for human users in the search for solutions. Finally, (4) the NA-IEC approach is applied in a challenge domain wherein leveraging human intuition and domain knowledge accelerates the evolution of solutions for the nontrivial octopus-arm control task. The culmination of these contributions demonstrates the importance of incorporating human insights into simulated evolution as a means to discovering better solutions more rapidly than traditional approaches.
Show less - Date Issued
- 2012
- Identifier
- CFE0004462, ucf:49335
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004462