Current Search: filters (x)
Pages
-
-
Title
-
Multicoupled Bandpass Filter Design Using a Multiple Feedback Configuration.
-
Creator
-
Martin, Robert J., Patz, Benjamin W., Engineering
-
Abstract / Description
-
Florida Technological University College of Engineering Thesis; In this paper, two methods for the design of active analog feedback bandpass filter pairs are examined. A third method is presented that does not use extra amplifiers for summation nor multicoupling. This third method uses identical bandpass amplifies and employs resistor summing to provide multicoupling. The name of this configuration is the "Dual Amplifier Bandpass Filter Employing Resistor Summing" (DABFERS). This...
Show moreFlorida Technological University College of Engineering Thesis; In this paper, two methods for the design of active analog feedback bandpass filter pairs are examined. A third method is presented that does not use extra amplifiers for summation nor multicoupling. This third method uses identical bandpass amplifies and employs resistor summing to provide multicoupling. The name of this configuration is the "Dual Amplifier Bandpass Filter Employing Resistor Summing" (DABFERS). This configuration is economically attractive, has low sensitivity and better phase lag characteristics. In addition, third order prototypes are examined and a solution method for higher order prototypes is suggested.
Show less
-
Date Issued
-
1976
-
Identifier
-
CFR0011990, ucf:53096
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFR0011990
-
-
Title
-
Complex-valued adaptive digital signal enhancement for applications in wireless communication systems.
-
Creator
-
Liu, Ying, Mikhael, Wasfy, Batarseh, Issa, Yang, Thomas, Hunter, Matthew, Haralambous, Michael, Myers, Brent, University of Central Florida
-
Abstract / Description
-
In recent decades, the wireless communication industry has attracted a great deal of research efforts to satisfy rigorous performance requirements and preserve high spectral efficiency. Along with this trend, I/Q modulation is frequently applied in modern wireless communications to develop high performance and high data rate systems. This has necessitated the need for applying efficient complex-valued signal processing techniques to highly-integrated, multi-standard receiver devices.In this...
Show moreIn recent decades, the wireless communication industry has attracted a great deal of research efforts to satisfy rigorous performance requirements and preserve high spectral efficiency. Along with this trend, I/Q modulation is frequently applied in modern wireless communications to develop high performance and high data rate systems. This has necessitated the need for applying efficient complex-valued signal processing techniques to highly-integrated, multi-standard receiver devices.In this dissertation, novel techniques for complex-valued digital signal enhancement are presented and analyzed for various applications in wireless communications. The first technique is a unified block processing approach to generate the complex-valued conjugate gradient Least Mean Square (LMS) techniques with optimal adaptations. The proposed algorithms exploit the concept of the complex conjugate gradients to find the orthogonal directions for updating the adaptive filter coefficients at each iteration. Along each orthogonal direction, the presented algorithms employ the complex Taylor series expansion to calculate time-varying convergence factors tailored for the adaptive filter coefficients. The performance of the developed technique is tested in the applications of channel estimation, channel equalization, and adaptive array beamforming. Comparing with the state of the art methods, the proposed techniques demonstrate improved performance and exhibit desirable characteristics for practical use.The second complex-valued signal processing technique is a novel Optimal Block Adaptive algorithm based on Circularity, OBA-C. The proposed OBA-C method compensates for a complex imbalanced signal by restoring its circularity. In addition, by utilizing the complex Taylor series expansion, the OBA-C method optimally updates the adaptive filter coefficients at each iteration. This algorithm can be applied to mitigate the frequency-dependent I/Q mismatch effects in analog front-end. Simulation results indicate that comparing with the existing methods, OBA-C exhibits superior convergence speed while maintaining excellent accuracy. The third technique is regarding interference rejection in communication systems. The research on both LMS and Independent Component Analysis (ICA) based techniques continues to receive significant attention in the area of interference cancellation. The performance of the LMS and ICA based approaches is studied for signals with different probabilistic distributions. Our research indicates that the ICA-based approach works better for super-Gaussian signals, while the LMS-based method is preferable for sub-Gaussian signals. Therefore, an appropriate choice of interference suppression algorithms can be made to satisfy the ever-increasing demand for better performance in modern receiver design.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004572, ucf:49192
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004572
-
-
Title
-
Integration of High-Q filters with Highly Efficient Antennas.
-
Creator
-
Yusuf, Yazid, Gong, Xun, Wahid, Parveen, Jones, W, Wu, Xinzhang, Wang, Jing, University of Central Florida
-
Abstract / Description
-
The integration of high-quality (Q)-factor 3-D filters with highly efficient antennas is addressed in this dissertation. Integration of filters and antennas into inseparable units eliminates the transitions between the otherwise separate structures resulting in more compact and efficient systems. The compact, highly efficient integrated 3-D filter/antenna systems, enabled by the techniques developed herein, allow for the realization of integrated RF front ends with significantly- reduced form...
Show moreThe integration of high-quality (Q)-factor 3-D filters with highly efficient antennas is addressed in this dissertation. Integration of filters and antennas into inseparable units eliminates the transitions between the otherwise separate structures resulting in more compact and efficient systems. The compact, highly efficient integrated 3-D filter/antenna systems, enabled by the techniques developed herein, allow for the realization of integrated RF front ends with significantly- reduced form factors.Integration of cavity filters with slot antennas in a single planar substrate is first demonstrated. Due to the high Q factor of cavity resonators, the efficiency of the integrated filter/antenna system is found to be the same as that of a reference filter with the same filtering characteristics. This means a near 100% efficient slot antenna is achieved within this integrated filter/antenna system. To further reduce the footprint of the integrated systems, vertically integrated filter/antenna systems are developed. We then demonstrate the integration of cavity filters with aperture antenna structures which enable larger bandwidths compared with slot antennas. The enhanced bandwidths are made possible through the excitation and radiation of surface waves. To obtain omnidirectional radiation patterns , we integrate cavity filters with monopole antennas. Finally, the integration of filters with patch antennas is addressed. Unlike the other filter/antenna integration examples presented, in which the antenna is utilized as an equivalent load, the patch antenna provides an additional pole in the filtering function.The presented techniques in this dissertation can be applied for filter/antenna integration in all microwave, and millimeter-wave frequency regions.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0004183, ucf:49075
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004183
-
-
Title
-
Enhancement of Antenna Array Performance Using Reconfigurable Slot-Ring Antennas and Integrated Filter/Antennas.
-
Creator
-
Li, Tianjiao, Gong, Xun, Wahid, Parveen, Yuan, Jiann-Shiun, Abdolvand, Reza, Kuebler, Stephen, University of Central Florida
-
Abstract / Description
-
As modern communication system technology develops, the demand for devices with smaller size, higher efficiency, and more functionality has increased dramatically. In addition, highly integrated RF-front-end modules with a reduced footprint and less transition loss between cascaded devices are desirable in most advanced wireless communication systems. Antenna arrays are widely used in wireless communication systems due to their high directivity and beam steering capability. Moreover, antenna...
Show moreAs modern communication system technology develops, the demand for devices with smaller size, higher efficiency, and more functionality has increased dramatically. In addition, highly integrated RF-front-end modules with a reduced footprint and less transition loss between cascaded devices are desirable in most advanced wireless communication systems. Antenna arrays are widely used in wireless communication systems due to their high directivity and beam steering capability. Moreover, antenna arrays are preferred in mobile communication systems for diversity reception to reduce signal fading effects. In order to meet the various requirements of rapidly developing wireless communication systems, low cost, compact, multifunctional integrated antenna arrays are in high demand.Reconfigurable antennas that can flexibly adapt to different applications by dynamically changing their frequency and radiation properties have attracted a lot of attention. Frequency, radiation pattern, polarization, or a combination of two or more of these parameters in the reconfiguration of antennas was studied and presented in recent years. A single reconfigurable antenna is able to replace multiple traditional antennas and accomplish different tasks. Thus, the complexity of wireless communication systems can be greatly reduced with a smaller device size. On the other hand, the integration of antennas with other devices in wireless communication systems that can improve the efficiency and shrink the device size is a growing trend in antenna technology. Compact and highly efficient integrated filters and antennas were studied previously; the studies show that by seamlessly co-designing filters with patch antennas, the fractional bandwidth (FBW) of the antennas can be enhanced as compared to stand-alone antennas.However, the advantages of both the reconfigurable antenna and integrated filter/antenna technology have not been fully applied to antenna array applications. Therefore, this dissertation explores how to maximize the antenna array performance using reconfigurable antennas and integrated filter/antennas. A continuously frequency reconfigurable slot-ring antenna/array with switches and varactors is presented first. By changing the state of the loaded switches, the reconfigurable slot-ring antenna/array is able to operate as an L-band slot-ring antenna or a 2(&)#215;2 S-band slot-ring antenna array. In each frequency band, the operation frequency of the antenna/array can be continuously tuned with the loaded varactors. To further enhance the functionality of the reconfigurable slot-ring antenna array, a dual-polarized fractal-shaped reconfigurable slot-ring antenna/array is developed with a reduced number of switches and an increased FBW. Additionally, ground plane solutions are explored to achieve single-sided radiation. The benefits of filter/antenna integration are also investigated in both linearly polarized patch phased arrays and circularly polarized patch antenna arrays. Finally, a preliminary study of a tunable integrated evanescent mode filter/antenna is conducted to validate the concept of combining reconfigurable antennas and integrated filter/antennas.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006950, ucf:51661
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006950
-
-
Title
-
DESIGN AND FABRICATION OF SPACE VARIANT MICRO OPTICAL ELEMENTS.
-
Creator
-
Srinivasan, Pradeep, LiKamWa, Patrick, University of Central Florida
-
Abstract / Description
-
A wide range of applications currently utilize conventional optical elements to individually transform the phase, polarization, and spectral transmission/reflection of the incident radiation to realize the desired system level function. The material properties and the feasibility of fabrication primarily impact the device and system functionality that can be realized. With the advancement in micro/nano patterning, growth, deposition and etching technology, devices with novel and multiplexed...
Show moreA wide range of applications currently utilize conventional optical elements to individually transform the phase, polarization, and spectral transmission/reflection of the incident radiation to realize the desired system level function. The material properties and the feasibility of fabrication primarily impact the device and system functionality that can be realized. With the advancement in micro/nano patterning, growth, deposition and etching technology, devices with novel and multiplexed optical functionalities have become feasible. As a result, it has become possible to engineer the device response in the near and far field by controlling the phase, polarization or spectral response at the micro scale. One of the methods that have been explored to realize unique optical functionalities is by varying the structural properties of the device as a function of spatial location at the sub-micron scale across the device aperture. Spatially varying the structural parameters of these devices is analogous to local modifications of the material properties. In this dissertation, the optical response of interference transmission filters, guided mode resonance reflection filters, and diffraction gratings operated in Littrow condition with strategically introduced spatial variation have been investigated. Spatial variations in optical interference filters were used to demonstrate wavelength tunable spatial filters. The effect was realized by integrating diffractive and continuous phase functions on the defect layer of a one-dimensional photonic crystal structure. Guided mode resonance filters are free space optical filters that provide narrow spectral reflection by combining grating and waveguide dispersion effects. Frequency dependent spatial reflection profiles were achieved by spatially varying the grating fill fraction in designed contours. Diffraction gratings with space variant fill fractions operating in Littrow condition were used to provide graded feedback profiles to improve the beam quality and spatial brightness of broad area diode lasers. The fabrication of space variant structures is challenging and has been accomplished primarily by techniques such as ruling, electron beam writing or complex deposition methods. In order to vary the desired structural parameter in a designed manner, a novel technique for the fabrication of space variant structures using projection lithography with a fidelity that rivals any of the current technologies was also developed as a part of this work. The devices exhibit wavelength dependent beam shaping properties in addition to spatial and spectral filtering and have potential applications in advanced imaging systems, graded reflectivity laser mirrors, and engineered illumination. The design, modeling, microfabrication and experimental characterization of space variant micro optical elements with novel optical functionalities are presented.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002843, ucf:48066
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002843
-
-
Title
-
RR INTERVAL ESTIMATION FROM AN ECG USING A LINEAR DISCRETE KALMAN FILTER.
-
Creator
-
Janapala, Arun, WEEKS, ARTHUR, University of Central Florida
-
Abstract / Description
-
An electrocardiogram (ECG) is used to monitor the activity of the heart. The human heart beats seventy times on an average per minute. The rate at which a human heart beats can exhibit a periodic variation. This is known as heart rate variability (HRV). Heart rate variability is an important measurement that can predict the survival after a heart attack. Studies have shown that reduced HRV predicts sudden death in patients with Myocardial Infarction (MI). The time interval between each beat...
Show moreAn electrocardiogram (ECG) is used to monitor the activity of the heart. The human heart beats seventy times on an average per minute. The rate at which a human heart beats can exhibit a periodic variation. This is known as heart rate variability (HRV). Heart rate variability is an important measurement that can predict the survival after a heart attack. Studies have shown that reduced HRV predicts sudden death in patients with Myocardial Infarction (MI). The time interval between each beat is called an RR interval, where the heart rate is given by the reciprocal of the RR interval expressed in beats per minute. For a deeper insight into the dynamics underlying the beat to beat RR variations and for understanding the overall variance in HRV, an accurate method of estimating the RR interval must be obtained. Before an HRV computation can be obtained the quality of the RR interval data obtained must be good and reliable. Most QRS detection algorithms can easily miss a QRS pulse producing unreliable RR interval values. Therefore it is necessary to estimate the RR interval in the presence of missing QRS beats. The approach in this thesis is to apply KALMAN estimation algorithm to the RR interval data calculated from the ECG. The goal is to improve the RR interval values obtained from missed beats of ECG data.
Show less
-
Date Issued
-
2005
-
Identifier
-
CFE0000340, ucf:46279
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000340
-
-
Title
-
RIGOROUS ANALYSIS OF WAVE GUIDING AND DIFFRACTIVE INTEGRATED OPTICAL STRUCTURES.
-
Creator
-
Greenwell, Andrew, Moharam, M.G., University of Central Florida
-
Abstract / Description
-
The realization of wavelength scale and sub-wavelength scale fabrication of integrated optical devices has led to a concurrent need for computational design tools that can accurately model electromagnetic phenomena on these length scales. This dissertation describes the physical, analytical, numerical, and software developments utilized for practical implementation of two particular frequency domain design tools: the modal method for multilayer waveguides and one-dimensional lamellar gratings...
Show moreThe realization of wavelength scale and sub-wavelength scale fabrication of integrated optical devices has led to a concurrent need for computational design tools that can accurately model electromagnetic phenomena on these length scales. This dissertation describes the physical, analytical, numerical, and software developments utilized for practical implementation of two particular frequency domain design tools: the modal method for multilayer waveguides and one-dimensional lamellar gratings and the Rigorous Coupled Wave Analysis (RCWA) for 1D, 2D, and 3D periodic optical structures and integrated optical devices. These design tools, including some novel numerical and programming extensions developed during the course of this work, were then applied to investigate the design of a few unique integrated waveguide and grating structures and the associated physical phenomena exploited by those structures. The properties and design of a multilayer, multimode waveguide-grating, guided mode resonance (GMR) filter are investigated. The multilayer, multimode GMR filters studied consist of alternating high and low refractive index layers of various thicknesses with a binary grating etched into the top layer. The separation of spectral wavelength resonances supported by a multimode GMR structure with fixed grating parameters is shown to be controllable from coarse to fine through the use of tightly controlled, but realizable, choices for multiple layer thicknesses in a two material waveguide; effectively performing the simultaneous engineering of the wavelength dispersion for multiple waveguide grating modes. This idea of simultaneous dispersion band tailoring is then used to design a multilayer, multimode GMR filter that possesses broadened angular acceptance for multiple wavelengths incident at a single angle of incidence. The effect of a steady-state linear loss or gain on the wavelength response of a GMR filter is studied. A linear loss added to the primary guiding layer of a GMR filter is shown to produce enhanced resonant absorption of light by the GMR structure. Similarly, linear gain added to the guiding layer is shown to produce enhanced resonant reflection and transmission from a GMR structure with decreased spectral line width. A combination of 2D and 3D modeling is utilized to investigate the properties of an embedded waveguide grating structure used in filtering/reflecting an incident guided mode. For the embedded waveguide grating, 2D modeling suggests the possibility of using low index periodic inclusions to create an embedded grating resonant filter, but the results of 3D RCWA modeling suggest that transverse low index periodic inclusions produce a resonant lossy cavity as opposed to a resonant reflecting mirror. A novel concept for an all-dielectric unidirectional dual grating output coupler is proposed and rigorously analyzed. A multilayer, single-mode, high and graded-index, slab waveguide is placed atop a slightly lower index substrate. The properties of the individual gratings etched into the waveguide's cover/air and substrate/air interfaces are then chosen such that no propagating diffracted orders are present in the device superstrate and only a single order is present outside the structure in the substrate. The concept produces a robust output coupler that requires neither phase-matching of the two gratings nor any resonances in the structure, and is very tolerant to potential errors in fabrication. Up to 96% coupling efficiency from the substrate-side grating is obtained over a wide range of grating properties.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001635, ucf:47244
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001635
-
-
Title
-
TWO-DIMENSIONAL GUIDED MODE RESONANT STRUCTURES FOR SPECTRAL FILTERING APPLICATIONS.
-
Creator
-
Boonruang, Sakoolkan, Moharam, M. G., University of Central Florida
-
Abstract / Description
-
Guided mode resonant (GMR) structures are optical devices that consist of a planar waveguide with a periodic structure either imbedded in or on the surface of the structure. The resonance anomaly in GMR structures has many applications as dielectric mirrors, tunable devices, sensors,and narrow spectral band reflection filters. A desirable response from a resonant grating filter normally includes a nearly 100% narrowband resonant spectral reflection (transmission), and a broad angular...
Show moreGuided mode resonant (GMR) structures are optical devices that consist of a planar waveguide with a periodic structure either imbedded in or on the surface of the structure. The resonance anomaly in GMR structures has many applications as dielectric mirrors, tunable devices, sensors,and narrow spectral band reflection filters. A desirable response from a resonant grating filter normally includes a nearly 100% narrowband resonant spectral reflection (transmission), and a broad angular acceptance at either normal incidence or an oblique angle of incidence. This dissertation is a detailed study of the unique nature of the resonance anomaly in GMR structures with two-dimensional (2-D) periodic perturbation. Clear understanding of the resonance phenomenon is developed and novel 2-D GMR structures are proposed to significantly improve the performance of narrow spectral filters. In 2-D grating diffraction, each diffracted order inherently propagates in its distinct diffraction plane. This allows for coupled polarization dependent resonant leaky modes with one in each diffraction plane. The nature of the interaction between these non-collinear guides and its impact on spectral and angular response of GMR devices is investigated and quantified for 2-D structures with rectangular and hexagonal grids. Based on the developed understanding of the underlying phenomenon, novel GMR devices are proposed and analyzed. A novel controllable multi-line guided mode resonant (GMR) filter is proposed. The separation of spectral wavelength resonances supported by a two-dimensional GMR structure can be coarse or fine depending on the physical dimensions of the structure and not the material properties. Multiple resonances are produced by weakly guided modes individually propagating along multiple planes of diffraction. Controllable two-line and three-line narrow-band reflection filter designs with spectral separation from a few up to hundreds of nanometers are exhibited using rectangular-lattice and hexagonal-lattice grating GMR structures, respectively. Broadening of the angular response of narrow band two-dimension guided mode resonant spectral filters, while maintaining a narrow spectral response, is investigated. The angular response is broadened by coupling the diffracted orders into multiple fundamental guided resonant modes. These guided modes have the same propagation constant but propagating in different planes inherent in multiple planes of diffraction of the 2-D gratings. The propagation constants of the guided resonant modes are determined from the physical dimensions of the grating (periodicity and duty cycle) and the incident direction. A five-fold improvement in the angular tolerance is achieved using a grating with strong second Bragg diffraction in order to produce a crossed diffraction. A novel dual grating structure with a second grating located on the substrate side is proposed to further broaden the angular tolerance of the spectral filter without degrading its spectral response. This strong second Bragg backward diffraction from the substrate grating causes two successive resonant bands to merge producing a resonance with symmetric broad angular response.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001825, ucf:47346
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001825
-
-
Title
-
ON THE USE OF GAUSSIAN FILTER FUNCTIONS FOR ADAPTIVE OPTICS.
-
Creator
-
Assad, Merfit, Andrews, Larry, University of Central Florida
-
Abstract / Description
-
For adaptive optic systems, the use of aperture filter functions calculated using various Zernike modes can be useful in removing lower-order aberrations caused by atmospheric turbulence. Traditionally, these filter functions are calculated using the step function depicting a hard aperture that introduces integrals that are sometimes difficult to integrate and must be done numerically. The Gaussian method can be used in place of the conventional method for calculating the aperture filter...
Show moreFor adaptive optic systems, the use of aperture filter functions calculated using various Zernike modes can be useful in removing lower-order aberrations caused by atmospheric turbulence. Traditionally, these filter functions are calculated using the step function depicting a hard aperture that introduces integrals that are sometimes difficult to integrate and must be done numerically. The Gaussian method can be used in place of the conventional method for calculating the aperture filter functions. Evaluation of the Gaussian approximation for modeling a finite receiver aperture can be made by comparison of reduction in phase variance with results achieved using the conventional method. The validity of Gaussian approximation in this application is demonstrated by the consistency of results between the two methodologies. Comparison of reduction in scintillation by the two methodologies reveals several benefits derived from utilization of Gaussian approximation. The Gaussian approximation produces data that can be interpreted analytically. It further produces greater scintillation reduction. This paper will first examine the use of statistical models for predicting atmospheric turbulence and then the use of Zernike polynomials in adaptive optics. Next, this paper compares the reduction of phase variance and scintillation using the conventional method with the Gaussian approximation to evaluate the effectiveness of the new filter functions. The results of these comparisons are presented both as mathematical expressions and graphically.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001436, ucf:52885
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001436
-
-
Title
-
BIT-RATE AWARE RECONFIGURABLE ARCHITECTURE FOR H.264/AVC DEBLOCKING FILTER.
-
Creator
-
Khraisha, Rakan, Lee, Jooheung, University of Central Florida
-
Abstract / Description
-
In H.264/AVC, DeBlocking Filter (DBF) achieves bit rate savings and it is used to improve visual quality by reducing the presence of blocking artifacts. However, these advantages come at the expense of increasing computational complexity of the DBF due to highly adaptive mode decision and small 4x4 block size. The DBF easily accounts for one third of the computational complexity of the decoder. The computational complexity required for various target applications from mobile to high...
Show moreIn H.264/AVC, DeBlocking Filter (DBF) achieves bit rate savings and it is used to improve visual quality by reducing the presence of blocking artifacts. However, these advantages come at the expense of increasing computational complexity of the DBF due to highly adaptive mode decision and small 4x4 block size. The DBF easily accounts for one third of the computational complexity of the decoder. The computational complexity required for various target applications from mobile to high definition video applications varies significantly. Therefore, it becomes apparent to design efficient architecture to adapt to different requirements. In this work, we exploit the scalability on both the hardware level and the algorithmic level to synergize the performance and to reduce computational complexity. First, we propose a modular DBF architecture which can be scaled to adapt to the required computing capability for various bit-rates, resolutions, and frame rates of video sequences. The scalable architecture is based on FPGA using dynamic partial reconfiguration. This desirable feature of FPGAs makes it possible for different hardware configurations to be implemented during run-time. The proposed design can be scaled to filter up to four different edges simultaneously, resulting in significant reduction of total processing time. Secondly, our experiments show by lowering the bit rate of video sequences, significant reduction in computational complexity can be achieved by the increased presence of skipped macroblocks, thus, avoiding redundant filtering operations. The implemented architecture has been evaluated using Xilinx Virtex-4 ML410 FPGA board. The design can operate at a maximum frequency of 103 MHz. The reconfiguration is done through Internal Configuration Access Port (ICAP) to achieve maximum performance needed by real time applications.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003247, ucf:48542
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003247
-
-
Title
-
A microcomputer implementation of real time, continuously programmable digital filters.
-
Creator
-
Storma, William Edward, Simmons, Fred O., Engineering
-
Abstract / Description
-
University of Central Florida College of Engineering Thesis; When a filter transfer function in s is replaced with the bilinear transform in z, t he resulting discrete model represents the original continuous model within a second order accuracy of integration. A unique set of recently discovered minimum memory algorithms that perform the bilinear transform on a continuous transfer function are implemented on an INTEL 8080 microprocessor system. Scal1ng techniques are used to frequency scale...
Show moreUniversity of Central Florida College of Engineering Thesis; When a filter transfer function in s is replaced with the bilinear transform in z, t he resulting discrete model represents the original continuous model within a second order accuracy of integration. A unique set of recently discovered minimum memory algorithms that perform the bilinear transform on a continuous transfer function are implemented on an INTEL 8080 microprocessor system. Scal1ng techniques are used to frequency scale all transfer functions to a standardized frequency. All data words are represented in a signed binary double precision format to maintain higher calculation speed and accuracy. Three test case transfer functions of different order are implemented using the bilinear transform algorithms. First, the algorithms are used to generate the three discrete models. Second, the continuous time models are driven by a step input function, generating a continuous time output. Third, the step function input is discretized and used to drive the bilinear algorithm derived models. Finally, the discrete outputs are compared with the continuous time outputs to validate and evaluate the software techniques used to implement the bilinear algorithms, which imply that the techniques provide a basis for new hardware designs.
Show less
-
Date Issued
-
1979
-
Identifier
-
CFR0003497, ucf:53140
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFR0003497
-
-
Title
-
Vehicle Tracking and Classification via 3D Geometries for Intelligent Transportation Systems.
-
Creator
-
Mcdowell, William, Mikhael, Wasfy, Jones, W Linwood, Haralambous, Michael, Atia, George, Mahalanobis, Abhijit, Muise, Robert, University of Central Florida
-
Abstract / Description
-
In this dissertation, we present generalized techniques which allow for the tracking and classification of vehicles by tracking various Point(s) of Interest (PoI) on a vehicle. Tracking the various PoI allows for the composition of those points into 3D geometries which are unique to a given vehicle type. We demonstrate this technique using passive, simulated image based sensor measurements and three separate inertial track formulations. We demonstrate the capability to classify the 3D...
Show moreIn this dissertation, we present generalized techniques which allow for the tracking and classification of vehicles by tracking various Point(s) of Interest (PoI) on a vehicle. Tracking the various PoI allows for the composition of those points into 3D geometries which are unique to a given vehicle type. We demonstrate this technique using passive, simulated image based sensor measurements and three separate inertial track formulations. We demonstrate the capability to classify the 3D geometries in multiple transform domains (PCA (&) LDA) using Minimum Euclidean Distance, Maximum Likelihood and Artificial Neural Networks. Additionally, we demonstrate the ability to fuse separate classifiers from multiple domains via Bayesian Networks to achieve ensemble classification.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005976, ucf:50790
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005976
-
-
Title
-
DESIGNING LIGHT FILTERS TO DETECT SKIN USING A LOW-POWERED SENSOR.
-
Creator
-
Tariq, Muhammad, Wisniewski, Pamela, Gong, Boqing, Leavens, Gary, University of Central Florida
-
Abstract / Description
-
Detection of nudity in photos and videos, especially prior to uploading to the internet, is vital to solving many problems related to adolescent sexting, the distribution of child pornography, and cyber-bullying. The problem with using nudity detection algorithms as a means to combat these problems is that: 1) it implies that a digitized nude photo of a minor already exists (i.e., child pornography), and 2) there are real ethical and legal concerns around the distribution and processing of...
Show moreDetection of nudity in photos and videos, especially prior to uploading to the internet, is vital to solving many problems related to adolescent sexting, the distribution of child pornography, and cyber-bullying. The problem with using nudity detection algorithms as a means to combat these problems is that: 1) it implies that a digitized nude photo of a minor already exists (i.e., child pornography), and 2) there are real ethical and legal concerns around the distribution and processing of child pornography. Once a camera captures an image, that image is no longer secure. Therefore, we need to develop new privacy-preserving solutions that prevent the digital capture of nude imagery of minors. My research takes a first step in trying to accomplish this long-term goal: In this thesis, I examine the feasibility of using a low-powered sensor to detect skin dominance (defined as an image comprised of 50% or more of human skin tone) in a visual scene. By designing four custom light filters to enhance the digital information extracted from 300 scenes captured with the sensor (without digitizing high-fidelity visual features), I was able to accurately detect a skin dominant scene with 83.7% accuracy, 83% precision, and 85% recall. The long-term goal to be achieved in the future is to design a low-powered vision sensor that can be mounted on a digital camera lens on a teen's mobile device to detect and/or prevent the capture of nude imagery. Thus, I discuss the limitations of this work toward this larger goal, as well as future research directions.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006806, ucf:51792
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006806
-
-
Title
-
THE REMOVAL OF MOTION ARTIFACTS FROM NON-INVASIVE BLOOD PRESSURE MEASUREMENTS.
-
Creator
-
Thakkar, Paresh, Weeks, Arthur, University of Central Florida
-
Abstract / Description
-
Modern Automatic Blood Pressure Measurement Techniques are based on measuring the cuff pressure and on sensing the pulsatile amplitude variations. These measurements are very sensitive to motion of the patient or the surroundings where the patient is. The slightest unexpected movements could offset the readings of the automatic Blood Pressure meter by a large amount or render the readings totally meaningless. Every effort must be taken to avoid subjecting the body of the patient or the...
Show moreModern Automatic Blood Pressure Measurement Techniques are based on measuring the cuff pressure and on sensing the pulsatile amplitude variations. These measurements are very sensitive to motion of the patient or the surroundings where the patient is. The slightest unexpected movements could offset the readings of the automatic Blood Pressure meter by a large amount or render the readings totally meaningless. Every effort must be taken to avoid subjecting the body of the patient or the patient's surroundings to motion for obtaining a reliable reading. But there are situations in which we need Blood Pressure Measurements with the patient or his surroundings in motion; for instance in an ambulance while a patient is being transported to a hospital. In this thesis, we present a technique to reduce the effect of motion artifact from Blood Pressure measurements. We digitize the blood pressure waveform and use Digital Signal Processing Techniques to process the corrupted waveform. We use the differences in frequency spectra of the Blood Pressure signal and motion artifact noise to remove the motion artifact noise. The motion artifact noise spectrum is not very well defined, since it may consist of many different frequency components depending on the kind of motion. The Blood Pressure signal is more or less a periodic signal. That translates to periodicity in the frequency domain. Hence, we designed a digital filter that could take advantage of the periodic nature of the Blood Pressure Signal waveform. The filter is shaped like a comb with periodic peaks around the signal frequency components. Further processing of the filtered signal: baseline restoration and level shifting help us to further reduce the noise corruption.
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000324, ucf:46289
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000324
-
-
Title
-
THE USE OF FILTERS IN TOPOLOGY.
-
Creator
-
Dasser, Abdellatif, Richardson, Gary, University of Central Florida
-
Abstract / Description
-
Sequences are sufficient to describe topological properties in metric spaces or, more generally, topological spaces having a countable base for the topology. However, filters or nets are needed in more abstract spaces. Nets are more natural extension of sequences but are generally less friendly to work with since quite often two nets have distinct directed sets for domains. Operations involving filters are set theoretic and generally certain to filters on the same set. The concept of a filter...
Show moreSequences are sufficient to describe topological properties in metric spaces or, more generally, topological spaces having a countable base for the topology. However, filters or nets are needed in more abstract spaces. Nets are more natural extension of sequences but are generally less friendly to work with since quite often two nets have distinct directed sets for domains. Operations involving filters are set theoretic and generally certain to filters on the same set. The concept of a filter was introduced by H. Cartan in 1937 and an excellent treatment of the subject can be found in N. Bourbaki (1940).
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000202, ucf:46271
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000202
-
-
Title
-
EFFICIENT ALGORITHMS FOR CORRELATION PATTERN RECOGNITION.
-
Creator
-
Ragothaman, Pradeep, Mikhael, Wasfy, University of Central Florida
-
Abstract / Description
-
The mathematical operation of correlation is a very simple concept, yet has a very rich history of application in a variety of engineering fields. It is essentially nothing but a technique to measure if and to what degree two signals match each other. Since this is a very basic and universal task in a wide variety of fields such as signal processing, communications, computer vision etc., it has been an important tool. The field of pattern recognition often deals with the task of analyzing...
Show moreThe mathematical operation of correlation is a very simple concept, yet has a very rich history of application in a variety of engineering fields. It is essentially nothing but a technique to measure if and to what degree two signals match each other. Since this is a very basic and universal task in a wide variety of fields such as signal processing, communications, computer vision etc., it has been an important tool. The field of pattern recognition often deals with the task of analyzing signals or useful information from signals and classifying them into classes. Very often, these classes are predetermined, and examples (templates) are available for comparison. This task naturally lends itself to the application of correlation as a tool to accomplish this goal. Thus the field of Correlation Pattern Recognition has developed over the past few decades as an important area of research. From the signal processing point of view, correlation is nothing but a filtering operation. Thus there has been a great deal of work in using concepts from filter theory to develop Correlation Filters for pattern recognition. While considerable work has been to done to develop linear correlation filters over the years, especially in the field of Automatic Target Recognition, a lot of attention has recently been paid to the development of Quadratic Correlation Filters (QCF). QCFs offer the advantages of linear filters while optimizing a bank of these simultaneously to offer much improved performance. This dissertation develops efficient QCFs that offer significant savings in storage requirements and computational complexity over existing designs. Firstly, an adaptive algorithm is presented that is able to modify the QCF coefficients as new data is observed. Secondly, a transform domain implementation of the QCF is presented that has the benefits of lower computational complexity and computational requirements while retaining excellent recognition accuracy. Finally, a two dimensional QCF is presented that holds the potential to further save on storage and computations. The techniques are developed based on the recently proposed Rayleigh Quotient Quadratic Correlation Filter (RQQCF) and simulation results are provided on synthetic and real datasets.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001974, ucf:47429
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001974
-
-
Title
-
INDOOR GEO-LOCATION AND TRACKING OF MOBILE AUTONOMOUS ROBOT.
-
Creator
-
Ramamurthy, Mahesh, Schiavone, Guy, University of Central Florida
-
Abstract / Description
-
The field of robotics has always been one of fascination right from the day of Terminator. Even though we still do not have robots that can actually replicate human action and intelligence, progress is being made in the right direction. Robotic applications range from defense to civilian, in public safety and fire fighting. With the increase in urban-warfare robot tracking inside buildings and in cities form a very important application. The numerous applications range from munitions tracking...
Show moreThe field of robotics has always been one of fascination right from the day of Terminator. Even though we still do not have robots that can actually replicate human action and intelligence, progress is being made in the right direction. Robotic applications range from defense to civilian, in public safety and fire fighting. With the increase in urban-warfare robot tracking inside buildings and in cities form a very important application. The numerous applications range from munitions tracking to replacing soldiers for reconnaissance information. Fire fighters use robots for survey of the affected area. Tracking robots has been limited to the local area under consideration. Decision making is inhibited due to limited local knowledge and approximations have to be made. An effective decision making would involve tracking the robot in earth co-ordinates such as latitude and longitude. GPS signal provides us sufficient and reliable data for such decision making. The main drawback of using GPS is that it is unavailable indoors and also there is signal attenuation outdoors. Indoor geolocation forms the basis of tracking robots inside buildings and other places where GPS signals are unavailable. Indoor geolocation has traditionally been the field of wireless networks using techniques such as low frequency RF signals and ultra-wideband antennas. In this thesis we propose a novel method for achieving geolocation and enable tracking. Geolocation and tracking are achieved by a combination of Gyroscope and encoders together referred to as the Inertial Navigation System (INS). Gyroscopes have been widely used in aerospace applications for stabilizing aircrafts. In our case we use gyroscope as means of determining the heading of the robot. Further, commands can be sent to the robot when it is off balance or off-track. Sensors are inherently error prone; hence the process of geolocation is complicated and limited by the imperfect mathematical modeling of input noise. We make use of Kalman Filter for processing erroneous sensor data, as it provides us a robust and stable algorithm. The error characteristics of the sensors are input to the Kalman Filter and filtered data is obtained. We have performed a large set of experiments, both indoors and outdoors to test the reliability of the system. In outdoors we have used the GPS signal to aid the INS measurements. When indoors we utilize the last known position and extrapolate to obtain the GPS co-ordinates.
Show less
-
Date Issued
-
2005
-
Identifier
-
CFE0000506, ucf:46451
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000506
-
-
Title
-
NOVEL COMPLEX ADAPTIVE SIGNAL PROCESSING TECHNIQUES EMPLOYING OPTIMALLY DERIVED TIME-VARYING CONVERGENCE FACTORS WITH APPLICATIONS IN DIGITAL SIGNAL PROCESSING AND WIRELESS COMMUNICATIONS.
-
Creator
-
Ranganathan, Raghuram, Mikhael, Wasfy, University of Central Florida
-
Abstract / Description
-
In digital signal processing in general, and wireless communications in particular, the increased usage of complex signal representations, and spectrally efficient complex modulation schemes such as QPSK and QAM has necessitated the need for efficient and fast-converging complex digital signal processing techniques. In this research, novel complex adaptive digital signal processing techniques are presented, which derive optimal convergence factors or step sizes for adjusting the adaptive...
Show moreIn digital signal processing in general, and wireless communications in particular, the increased usage of complex signal representations, and spectrally efficient complex modulation schemes such as QPSK and QAM has necessitated the need for efficient and fast-converging complex digital signal processing techniques. In this research, novel complex adaptive digital signal processing techniques are presented, which derive optimal convergence factors or step sizes for adjusting the adaptive system coefficients at each iteration. In addition, the real and imaginary components of the complex signal and complex adaptive filter coefficients are treated as separate entities, and are independently updated. As a result, the developed methods efficiently utilize the degrees of freedom of the adaptive system, thereby exhibiting improved convergence characteristics, even in dynamic environments. In wireless communications, acceptable co-channel, adjacent channel, and image interference rejection is often one of the most critical requirements for a receiver. In this regard, the fixed-point complex Independent Component Analysis (ICA) algorithm, called Complex FastICA, has been previously applied to realize digital blind interference suppression in stationary or slow fading environments. However, under dynamic flat fading channel conditions frequently encountered in practice, the performance of the Complex FastICA is significantly degraded. In this dissertation, novel complex block adaptive ICA algorithms employing optimal convergence factors are presented, which exhibit superior convergence speed and accuracy in time-varying flat fading channels, as compared to the Complex FastICA algorithm. The proposed algorithms are called Complex IA-ICA, Complex OBA-ICA, and Complex CBC-ICA. For adaptive filtering applications, the Complex Least Mean Square algorithm (Complex LMS) has been widely used in both block and sequential form, due to its computational simplicity. However, the main drawback of the Complex LMS algorithm is its slow convergence and dependence on the choice of the convergence factor. In this research, novel block and sequential based algorithms for complex adaptive digital filtering are presented, which overcome the inherent limitations of the existing Complex LMS. The block adaptive algorithms are called Complex OBA-LMS and Complex OBAI-LMS, and their sequential versions are named Complex HA-LMS and Complex IA-LMS, respectively. The performance of the developed techniques is tested in various adaptive filtering applications, such as channel estimation, and adaptive beamforming. The combination of Orthogonal Frequency Division Multiplexing (OFDM) and the Multiple-Input-Multiple-Output (MIMO) technique is being increasingly employed for broadband wireless systems operating in frequency selective channels. However, MIMO-OFDM systems are extremely sensitive to Intercarrier Interference (ICI), caused by Carrier Frequency Offset (CFO) between local oscillators in the transmitter and the receiver. This results in crosstalk between the various OFDM subcarriers resulting in severe deterioration in performance. In order to mitigate this problem, the previously proposed Complex OBA-ICA algorithm is employed to recover user signals in the presence of ICI and channel induced mixing. The effectiveness of the Complex OBA-ICA method in performing ICI mitigation and signal separation is tested for various values of CFO, rate of channel variation, and Signal to Noise Ratio (SNR).
Show less
-
Date Issued
-
2008
-
Identifier
-
CFE0002431, ucf:47765
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002431
-
-
Title
-
Post Conversion Correction of Non-Linear Mismatches for Time Interleaved Analog-to-Digital Converters.
-
Creator
-
Parkey, Charna, Mikhael, Wasfy, Qu, Zhihua, Georgiopoulos, Michael, Myers, Brent, Wei, Lei, Chester, David, University of Central Florida
-
Abstract / Description
-
Time Interleaved Analog-to-Digital Converters (TI-ADCs) utilize an architecture which enables conversion rates well beyond the capabilities of a single converter while preserving most or all of the other performance characteristics of the converters on which said architecture is based. Most of the approaches discussed here are independent of architecture; some solutions take advantage of specific architectures. Chapter 1 provides the problem formulation and reviews the errors found in ADCs as...
Show moreTime Interleaved Analog-to-Digital Converters (TI-ADCs) utilize an architecture which enables conversion rates well beyond the capabilities of a single converter while preserving most or all of the other performance characteristics of the converters on which said architecture is based. Most of the approaches discussed here are independent of architecture; some solutions take advantage of specific architectures. Chapter 1 provides the problem formulation and reviews the errors found in ADCs as well as a brief literature review of available TI-ADC error correction solutions. Chapter 2 presents the methods and materials used in implementation as well as extend the state of the art for post conversion correction. Chapter 3 presents the simulation results of this work and Chapter 4 concludes the work. The contribution of this research is three fold: A new behavioral model was developed in SimulinkTM and MATLABTM to model and test linear and nonlinear mismatch errors emulating the performance data of actual converters. The details of this model are presented as well as the results of cumulant statistical calculations of the mismatch errors which is followed by the detailed explanation and performance evaluation of the extension developed in this research effort. Leading post conversion correction methods are presented and an extension with derivations is presented. It is shown that the data converter subsystem architecture developed is capable of realizing better performance of those currently reported in the literature while having a more efficient implementation.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005683, ucf:50171
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005683
-
-
Title
-
CATEGORICAL PROPERTIES OF LATTICE-VALUED CONVERGENCE SPACES.
-
Creator
-
Flores, Paul, Richardson, Gary, University of Central Florida
-
Abstract / Description
-
This work can be roughly divided into two parts. Initially, it may be considered a continuation of the very interesting research on the topic of Lattice-Valued Convergence Spaces given by Jäger [2001, 2005]. The alternate axioms presented here seem to lead to theorems having proofs more closely related to standard arguments used in Convergence Space theory when the Lattice is L=.Various Subcategories are investigated. One such subconstruct is shown to be isomorphic to the category of...
Show moreThis work can be roughly divided into two parts. Initially, it may be considered a continuation of the very interesting research on the topic of Lattice-Valued Convergence Spaces given by Jäger [2001, 2005]. The alternate axioms presented here seem to lead to theorems having proofs more closely related to standard arguments used in Convergence Space theory when the Lattice is L=.Various Subcategories are investigated. One such subconstruct is shown to be isomorphic to the category of Lattice Valued Fuzzy Convergence Spaces defined and studied by Jäger . Our principal category is shown to be a topological universe and contains a subconstruct isomorphic to the category of probabilistic convergence spaces discussed in Kent and Richardson when L=. Fundamental work in lattice-valued convergence from the more general perspective of monads can be found in Gähler . Secondly, diagonal axioms are defined in the category whose objects consist of all the lattice valued convergence spaces. When the latter lattice is linearly ordered, a diagonal condition is given which characterizes those objects in the category that are determined by probabilistic convergence spaces which are topological. Certain background information regarding filters, convergence spaces, and diagonal axioms with its dual are given in Chapter 1. Chapter 2 describes Probabilistic Convergence and associated Diagonal axioms. Chapter 3 defines Jäger convergence and proves that Jäger's construct is isomorphic to a bireflective subconstruct of SL-CS. Furthermore, connections between the diagonal axioms discussed and those given by Gähler are explored. In Chapter 4, further categorical properties of SL-CS are discussed and in particular, it is shown that SL-CS is topological, cartesian closed, and extensional. Chapter 5 explores connections between diagonal axioms for objects in the sub construct δ(PCS) and SL-CS. Finally, recommendations for further research are provided.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001715, ucf:47292
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001715
Pages