Current Search: freeway (x)
-
-
Title
-
IMPACT OF CONSTRUCTION ON FREEWAY TRAFFIC OPERATIONS.
-
Creator
-
Jagtap, Seema, Al-Deek, Haitham, University of Central Florida
-
Abstract / Description
-
This study provides an insight into the impact of construction activities on traffic operations. Specifically, the topic of interest for this thesis is to study the impact of construction on traffic operations for construction projects on Interstate 4 from SR 434 to John Young Parkway, from SR 528 to SR 535, and from SR 482 to SR 528. These three projects were chosen because they were the only projects on Interstate 4 where both construction data and loop detector data were available for...
Show moreThis study provides an insight into the impact of construction activities on traffic operations. Specifically, the topic of interest for this thesis is to study the impact of construction on traffic operations for construction projects on Interstate 4 from SR 434 to John Young Parkway, from SR 528 to SR 535, and from SR 482 to SR 528. These three projects were chosen because they were the only projects on Interstate 4 where both construction data and loop detector data were available for analysis. The data was collected by examining the Florida Department of Transportation daily inspection reports which had detailed documentation of construction operations that took place. The following information was collected: date, type of construction work being performed, time, location, and direction of impact to the traveling public. These data points were cross-referenced to the loop detector stations and mile posts to collect the loop detector data and roadway geometric characteristics such as location of ramps, type of median, etc. The loop detector data (speed, volume, and occupancy) were collected and aggregated for the data analysis. The loop detector data were collected during construction, one year prior to construction, and one year after construction for comparison purposes. Logistic regression analysis under the within-stratum matched sampling framework was conducted as an exploratory analysis to see if there was a difference on the traffic impacts with and without construction. This was done by matching the variables to ensure that there were no other differences impacting the traffic operations. Logistic regression proved there was a difference in the traffic operations with and without the presence of construction. The simple model results demonstrated that speed was reduced, occupancy was increased, and volume decreased during construction. After construction, the speed and volume increased and the occupancy decreased. Linear regression and analysis of covariance were used to quantify the impact of the various construction activities on the speed, occupancy and volume. Linear regression and analysis of covariance were used to understand the impacts from the presence of roadway geometrics on freeway traffic operations during construction. Logistic regression controls the geometrics, linear regression and analysis of covariance demonstrated how the geometrics impacted the construction effects. The geometric characteristics of each area were included in this analysis. This thesis investigates construction activities and roadway geometric parameters that impact traffic freeway operations (speed, volume, and occupancy) before, during, and after construction. This research showed the impact of different types of construction operations in a highway construction widening project. This research demonstrated that construction activities have a significant impact on speed, volume, and occupancy. Different types of construction activities have more of an impact than other activities. Paving had the highest adverse impact. Agencies writing construction contracts should prohibit paving during the most highly congested times. For example, in Orlando, Florida on Interstate 4, agencies should prohibit night paving during the peak holiday seasons (such as Thanksgiving, spring breaks, Christmas, etc.) around the tourist attractions during closing times, during the peak morning hours, and during the closing times of high attendance activities, such as Halloween Horror Nights at Universal Studios when high attendance is anticipated at the theme parks. Roadway geometrics also impact the traffic operations differently, before, during, and after construction and differently during various times of the day. The information of improved roadway geometrics and faster traffic flow can be used at open houses for upcoming projects where there are many people opposed to construction projects to show how the roadway construction projects actually increase traffic flow, helping everyone to get to their destinations much faster. The impact of the traffic delays in the congested areas, such as the tourist areas on Interstate 4 during the peak traffic times could be quantified to calculate delay costs to the roadway users.
Show less
-
Date Issued
-
2008
-
Identifier
-
CFE0002201, ucf:47887
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002201
-
-
Title
-
EXAMINING DYNAMIC VARIABLE SPEED LIMIT STRATEGIES FOR THE REDUCTION OF REAL-TIME CRASH RISK ON FREEWAYS.
-
Creator
-
Cunningham, Ryan, Abdel-Aty, Mohamed, University of Central Florida
-
Abstract / Description
-
Recent research at the University of Central Florida involving crashes on Interstate-4 in Orlando, Florida has led to the creation of new statistical models capable of determining the crash risk on the freeway (Abdel-Aty et al., 2004; 2005, Pande and Abdel-Aty, 2006). These models are able to calculate the rear-end and lane-change crash risks along the freeway in real-time through the use of static information at various locations along the freeway as well as the real-time traffic data...
Show moreRecent research at the University of Central Florida involving crashes on Interstate-4 in Orlando, Florida has led to the creation of new statistical models capable of determining the crash risk on the freeway (Abdel-Aty et al., 2004; 2005, Pande and Abdel-Aty, 2006). These models are able to calculate the rear-end and lane-change crash risks along the freeway in real-time through the use of static information at various locations along the freeway as well as the real-time traffic data obtained by loop detectors. Since these models use real-time traffic data, they are capable of calculating rear-end and lane-change crash risk values as the traffic flow conditions are changing on the freeway. The objective of this study is to examine the potential benefits of variable speed limit implementation techniques for reducing the crash risk along the freeway. Variable speed limits is an ITS strategy that is typically used upstream of a queue in order to reduce the effects of congestion. By lowering the speeds of the vehicles approaching a queue, more time is given for the queue to dissipate from the front before it continues to grow from the back. This study uses variable speed limit strategies in a corridor-wide attempt to reduce rear-end and lane-change crash risks where speed differences between upstream and downstream vehicles are high. The idea of homogeneous speed zones was also introduced in this study to determine the distance over which variable speed limits should be implemented from a station of interest. This is unique since it is the first time a dynamic distance has been considered for variable speed limit implementation. Several VSL strategies were found to successfully reduce the rear-end and lane-change crash risks at low-volume traffic conditions (60% and 80% loading conditions). In every case, the most successful treatments involved the lowering of upstream speed limits by 5 mph and the raising of downstream speed limits by 5 mph. In the free-flow condition (60% loading), the best treatments involved the more liberal threshold for defining homogeneous speed zones (5 mph) and the more liberal implementation distance (entire speed zone), as well as a minimum time period of 10 minutes. This treatment was actually shown to significantly reduce the network travel time by 0.8%. It was also shown that this particular implementation strategy (lowering upstream, raising downstream) is wholly resistant to the effects of crash migration in the 60% loading scenario. In the condition approaching congestion (80% loading), the best treatment again involved the more liberal threshold for homogeneous speed zones (5 mph), yet the more conservative implementation distance (half the speed zone), along with a minimum time period of 5 minutes. This particular treatment arose as the best due to its unique capability to resist the increasing effects of crash migration in the 80% loading scenario. It was shown that the treatments implementing over half the speed zone were more robust against crash migration than other treatments. The best treatment exemplified the greatest benefit in reduced sections and the greatest resistance to crash migration in other sections. In the 80% loading scenario, the best treatment increased the network travel time by less than 0.4%, which is deemed acceptable. No treatment was found to successfully reduce the rear-end and lane-change crash risks in the congested traffic condition (90% loading). This is attributed to the fact that, in the congested state, the speed of vehicles is subject to the surrounding traffic conditions and not to the posted speed limit. Therefore, changing the posted speed limit does not affect the speed of vehicles in a desirable manner. These conclusions agree with Dilmore (2005).
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001723, ucf:47309
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001723
-
-
Title
-
ESTIMATION OF HYBRID MODELS FOR REAL-TIME CRASH RISK ASSESSMENT ON FREEWAYS.
-
Creator
-
pande, anurag, Abdel-Aty, Mohamed, University of Central Florida
-
Abstract / Description
-
Relevance of reactive traffic management strategies such as freeway incident detection has been diminishing with advancements in mobile phone usage and video surveillance technology. On the other hand, capacity to collect, store, and analyze traffic data from underground loop detectors has witnessed enormous growth in the recent past. These two facts together provide us with motivation as well as the means to shift the focus of freeway traffic management toward proactive strategies that would...
Show moreRelevance of reactive traffic management strategies such as freeway incident detection has been diminishing with advancements in mobile phone usage and video surveillance technology. On the other hand, capacity to collect, store, and analyze traffic data from underground loop detectors has witnessed enormous growth in the recent past. These two facts together provide us with motivation as well as the means to shift the focus of freeway traffic management toward proactive strategies that would involve anticipating incidents such as crashes. The primary element of proactive traffic management strategy would be model(s) that can separate 'crash prone' conditions from 'normal' traffic conditions in real-time. The aim in this research is to establish relationship(s) between historical crashes of specific types and corresponding loop detector data, which may be used as the basis for classifying real-time traffic conditions into 'normal' or 'crash prone' in the future. In this regard traffic data in this study were also collected for cases which did not lead to crashes (non-crash cases) so that the problem may be set up as a binary classification. A thorough review of the literature suggested that existing real-time crash 'prediction' models (classification or otherwise) are generic in nature, i.e., a single model has been used to identify all crashes (such as rear-end, sideswipe, or angle), even though traffic conditions preceding crashes are known to differ by type of crash. Moreover, a generic model would yield no information about the collision most likely to occur. To be able to analyze different groups of crashes independently, a large database of crashes reported during the 5-year period from 1999 through 2003 on Interstate-4 corridor in Orlando were collected. The 36.25-mile instrumented corridor is equipped with 69 dual loop detector stations in each direction (eastbound and westbound) located approximately every ½ mile. These stations report speed, volume, and occupancy data every 30-seconds from the three through lanes of the corridor. Geometric design parameters for the freeway were also collected and collated with historical crash and corresponding loop detector data. The first group of crashes to be analyzed were the rear-end crashes, which account to about 51% of the total crashes. Based on preliminary explorations of average traffic speeds; rear-end crashes were grouped into two mutually exclusive groups. First, those occurring under extended congestion (referred to as regime 1 traffic conditions) and the other which occurred with relatively free-flow conditions (referred to as regime 2 traffic conditions) prevailing 5-10 minutes before the crash. Simple rules to separate these two groups of rear-end crashes were formulated based on the classification tree methodology. It was found that the first group of rear-end crashes can be attributed to parameters measurable through loop detectors such as the coefficient of variation in speed and average occupancy at stations in the vicinity of crash location. For the second group of rear-end crashes (referred to as regime 2) traffic parameters such as average speed and occupancy at stations downstream of the crash location were significant along with off-line factors such as the time of day and presence of an on-ramp in the downstream direction. It was found that regime 1 traffic conditions make up only about 6% of the traffic conditions on the freeway. Almost half of rear-end crashes occurred under regime 1 traffic regime even with such little exposure. This observation led to the conclusion that freeway locations operating under regime 1 traffic may be flagged for (rear-end) crashes without any further investigation. MLP (multilayer perceptron) and NRBF (normalized radial basis function) neural network architecture were explored to identify regime 2 rear-end crashes. The performance of individual neural network models was improved by hybridizing their outputs. Individual and hybrid PNN (probabilistic neural network) models were also explored along with matched case control logistic regression. The stepwise selection procedure yielded the matched logistic regression model indicating the difference between average speeds upstream and downstream as significant. Even though the model provided good interpretation, its classification accuracy over the validation dataset was far inferior to the hybrid MLP/NRBF and PNN models. Hybrid neural network models along with classification tree model (developed to identify the traffic regimes) were able to identify about 60% of the regime 2 rear-end crashes in addition to all regime 1 rear-end crashes with a reasonable number of positive decisions (warnings). It translates into identification of more than ¾ (77%) of all rear-end crashes. Classification models were then developed for the next most frequent type, i.e., lane change related crashes. Based on preliminary analysis, it was concluded that the location specific characteristics, such as presence of ramps, mile-post location, etc. were not significantly associated with these crashes. Average difference between occupancies of adjacent lanes and average speeds upstream and downstream of the crash location were found significant. The significant variables were then subjected as inputs to MLP and NRBF based classifiers. The best models in each category were hybridized by averaging their respective outputs. The hybrid model significantly improved on the crash identification achieved through individual models and 57% of the crashes in the validation dataset could be identified with 30% warnings. Although the hybrid models in this research were developed with corresponding data for rear-end and lane-change related crashes only, it was observed that about 60% of the historical single vehicle crashes (other than rollovers) could also be identified using these models. The majority of the identified single vehicle crashes, according to the crash reports, were caused due to evasive actions by the drivers in order to avoid another vehicle in front or in the other lane. Vehicle rollover crashes were found to be associated with speeding and curvature of the freeway section; the established relationship, however, was not sufficient to identify occurrence of these crashes in real-time. Based on the results from modeling procedure, a framework for parallel real-time application of these two sets of models (rear-end and lane-change) in the form of a system was proposed. To identify rear-end crashes, the data are first subjected to classification tree based rules to identify traffic regimes. If traffic patterns belong to regime 1, a rear-end crash warning is issued for the location. If the patterns are identified to be regime 2, then they are subjected to hybrid MLP/NRBF model employing traffic data from five surrounding traffic stations. If the model identifies the patterns as crash prone then the location may be flagged for rear-end crash, otherwise final check for a regime 2 rear-end crash is applied on the data through the hybrid PNN model. If data from five stations are not available due to intermittent loop failures, the system is provided with the flexibility to switch to models with more tolerant data requirements (i.e., model using traffic data from only one station or three stations). To assess the risk of a lane-change related crash, if all three lanes at the immediate upstream station are functioning, the hybrid of the two of the best individual neural network models (NRBF with three hidden neurons and MLP with four hidden neurons) is applied to the input data. A warning for a lane-change related crash may be issued based on its output. The proposed strategy is demonstrated over a complete day of loop data in a virtual real-time application. It was shown that the system of models may be used to continuously assess and update the risk for rear-end and lane-change related crashes. The system developed in this research should be perceived as the primary component of proactive traffic management strategy. Output of the system along with the knowledge of variables critically associated with specific types of crashes identified in this research can be used to formulate ways for avoiding impending crashes. However, specific crash prevention strategies e.g., variable speed limit and warnings to the commuters demand separate attention and should be addressed through thorough future research.
Show less
-
Date Issued
-
2005
-
Identifier
-
CFE0000842, ucf:46659
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000842
-
-
Title
-
UTILIZING A REAL LIFE DATA WAREHOUSE TO DEVELOP FREEWAY TRAVEL TIME ELIABILITY STOCHASTIC MODELS.
-
Creator
-
Emam, Emam, Al-Deek, Haitham, University of Central Florida
-
Abstract / Description
-
During the 20th century, transportation programs were focused on the development of the basic infrastructure for the transportation networks. In the 21st century, the focus has shifted to management and operations of these networks. Transportation network reliability measure plays an important role in judging the performance of the transportation system and in evaluating the impact of new Intelligent Transportation Systems (ITS) deployment. The measurement of transportation network travel...
Show moreDuring the 20th century, transportation programs were focused on the development of the basic infrastructure for the transportation networks. In the 21st century, the focus has shifted to management and operations of these networks. Transportation network reliability measure plays an important role in judging the performance of the transportation system and in evaluating the impact of new Intelligent Transportation Systems (ITS) deployment. The measurement of transportation network travel time reliability is imperative for providing travelers with accurate route guidance information. It can be applied to generate the shortest path (or alternative paths) connecting the origins and destinations especially under conditions of varying demands and limited capacities. The measurement of transportation network reliability is a complex issue because it involves both the infrastructure and the behavioral responses of the users. Also, this subject is challenging because there is no single agreed-upon reliability measure. This dissertation developed a new method for estimating the effect of travel demand variation and link capacity degradation on the reliability of a roadway network. The method is applied to a hypothetical roadway network and the results show that both travel time reliability and capacity reliability are consistent measures for reliability of the road network, but each may have a different use. The capacity reliability measure is of special interest to transportation network planners and engineers because it addresses the issue of whether the available network capacity relative to the present or forecast demand is sufficient, whereas travel time reliability is especially interesting for network users. The new travel time reliability method is sensitive to the users' perspective since it reflects that an increase in segment travel time should always result in less travel time reliability. And, it is an indicator of the operational consistency of a facility over an extended period of time. This initial theoretical effort and basic research was followed by applying the new method to the I-4 corridor in Orlando, Florida. This dissertation utilized a real life transportation data warehouse to estimate travel time reliability of the I-4 corridor. Four different travel time stochastic models: Weibull, Exponential, Lognormal, and Normal were tested. Lognormal was the best-fit model. Unlike the mechanical equipments, it is unrealistic that any freeway segment can be traversed in zero seconds no matter how fast the vehicles are. So, an adjustment of the developed best-fit statistical model (Lognormal) location parameter was needed to accurately estimate the travel time reliability. The adjusted model can be used to compute and predict travel time reliability of freeway corridors and report this information in real time to the public through traffic management centers. Compared to existing Florida Method and California Buffer Time Method, the new reliability method showed higher sensitivity to geographical locations, which reflects the level of congestion and bottlenecks. The major advantages/benefits of this new method to practitioners and researchers over the existing methods are its ability to estimate travel time reliability as a function of departure time, and that it treats travel time as a continuous variable that captures the variability experienced by individual travelers over an extended period of time. As such, the new method developed in this dissertation could be utilized in transportation planning and freeway operations for estimating the important travel time reliability measure of performance. Then, the segment length impacts on travel time reliability calculations were investigated utilizing the wealth of data available in the I-4 data warehouse. The developed travel time reliability models showed significant evidence of the relationship between the segment length and the results accuracy. The longer the segment, the less accurate were the travel time reliability estimates. Accordingly, long segments (e.g., 25 miles) are more appropriate for planning purposes as a macroscopic performance measure of the freeway corridor. Short segments (e.g., 5 miles) are more appropriate for the evaluation of freeway operations as a microscopic performance measure. Further, this dissertation has explored the impact of relaxing an important assumption in reliability analysis: Link independency. In real life, assuming that link failures on a road network are statistically independent is dubious. The failure of a link in one particular area does not necessarily result in the complete failure of the neighboring link, but may lead to deterioration of its performance. The "Cause-Based Multimode Model" (CBMM) has been used to address link dependency in communication networks. However, the transferability of this model to transportation networks has not been tested and this approach has not been considered before in the calculation of transportation networks' reliability. This dissertation presented the CBMM and applied it to predict transportation networks' travel time reliability that an origin demand can reach a specified destination under multimodal dependency link failure conditions. The new model studied the multi-state system reliability analysis of transportation networks for which one cannot formulate an "all or nothing" type of failure criterion and in which dependent link failures are considered. The results demonstrated that the newly developed method has true potential and can be easily extended to large-scale networks as long as the data is available. More specifically, the analysis of a hypothetical network showed that the dependency assumption is very important to obtain more reasonable travel time reliability estimates of links, paths, and the entire network. The results showed large discrepancy between the dependency and independency analysis scenarios. Realistic scenarios that considered the dependency assumption were on the safe side, this is important for transportation network decision makers. Also, this could aid travelers in making better choices. In contrast, deceptive information caused by the independency assumption could add to the travelers' anxiety associated with the unknown length of delay. This normally reflects negatively on highway agencies and management of taxpayers' resources.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0000965, ucf:46709
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000965
-
-
Title
-
Multi-Level Safety Performance Functions for High Speed Facilities.
-
Creator
-
Ahmed, Mohamed, Abdel-Aty, Mohamed, Radwan, Ahmed, Al-Deek, Haitham, Mackie, Kevin, Pande, Anurag, Uddin, Nizam, University of Central Florida
-
Abstract / Description
-
High speed facilities are considered the backbone of any successful transportation system; Interstates, freeways, and expressways carry the majority of daily trips on the transportation network. Although these types of roads are relatively considered the safest among other types of roads, they still experience many crashes, many of which are severe, which not only affect human lives but also can have tremendous economical and social impacts. These facts signify the necessity of enhancing the...
Show moreHigh speed facilities are considered the backbone of any successful transportation system; Interstates, freeways, and expressways carry the majority of daily trips on the transportation network. Although these types of roads are relatively considered the safest among other types of roads, they still experience many crashes, many of which are severe, which not only affect human lives but also can have tremendous economical and social impacts. These facts signify the necessity of enhancing the safety of these high speed facilities to ensure better and efficient operation. Safety problems could be assessed through several approaches that can help in mitigating the crash risk on long and short term basis. Therefore, the main focus of the research in this dissertation is to provide a framework of risk assessment to promote safety and enhance mobility on freeways and expressways. Multi-level Safety Performance Functions (SPFs) were developed at the aggregate level using historical crash data and the corresponding exposure and risk factors to identify and rank sites with promise (hot-spots). Additionally, SPFs were developed at the disaggregate level utilizing real-time weather data collected from meteorological stations located at the freeway section as well as traffic flow parameters collected from different detection systems such as Automatic Vehicle Identification (AVI) and Remote Traffic Microwave Sensors (RTMS). These disaggregate SPFs can identify real-time risks due to turbulent traffic conditions and their interactions with other risk factors.In this study, two main datasets were obtained from two different regions. Those datasets comprise historical crash data, roadway geometrical characteristics, aggregate weather and traffic parameters as well as real-time weather and traffic data.At the aggregate level, Bayesian hierarchical models with spatial and random effects were compared to Poisson models to examine the safety effects of roadway geometrics on crash occurrence along freeway sections that feature mountainous terrain and adverse weather. At the disaggregate level; a main framework of a proactive safety management system using traffic data collected from AVI and RTMS, real-time weather and geometrical characteristics was provided. Different statistical techniques were implemented. These techniques ranged from classical frequentist classification approaches to explain the relationship between an event (crash) occurring at a given time and a set of risk factors in real time to other more advanced models. Bayesian statistics with updating approach to update beliefs about the behavior of the parameter with prior knowledge in order to achieve more reliable estimation was implemented. Also a relatively recent and promising Machine Learning technique (Stochastic Gradient Boosting) was utilized to calibrate several models utilizing different datasets collected from mixed detection systems as well as real-time meteorological stations. The results from this study suggest that both levels of analyses are important, the aggregate level helps in providing good understanding of different safety problems, and developing policies and countermeasures to reduce the number of crashes in total. At the disaggregate level, real-time safety functions help toward more proactive traffic management system that will not only enhance the performance of the high speed facilities and the whole traffic network but also provide safer mobility for people and goods. In general, the proposed multi-level analyses are useful in providing roadway authorities with detailed information on where countermeasures must be implemented and when resources should be devoted. The study also proves that traffic data collected from different detection systems could be a useful asset that should be utilized appropriately not only to alleviate traffic congestion but also to mitigate increased safety risks. The overall proposed framework can maximize the benefit of the existing archived data for freeway authorities as well as for road users.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004508, ucf:49274
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004508