Current Search: freight transportation data (x)
View All Items
- Title
- DEVELOPMENT OF A WEIGH-IN-MOTION SYSTEM USING ACOUSTIC EMISSION SENSORS.
- Creator
-
Bowie, Jeanne, Radwan, Essam, University of Central Florida
- Abstract / Description
-
This dissertation proposes a system for weighing commercial vehicles in motion using acoustic emission sensors attached to a metal bar placed across the roadway. The signal from the sensors is analyzed by a computer and the vehicle weight is determined by a statistical model which correlates the acoustic emission parameters to the vehicle weight. Such a system would be portable and low-cost, allowing for the measurement of vehicle weights in much the same way commercial tube and radar...
Show moreThis dissertation proposes a system for weighing commercial vehicles in motion using acoustic emission sensors attached to a metal bar placed across the roadway. The signal from the sensors is analyzed by a computer and the vehicle weight is determined by a statistical model which correlates the acoustic emission parameters to the vehicle weight. Such a system would be portable and low-cost, allowing for the measurement of vehicle weights in much the same way commercial tube and radar counters routinely collect vehicle speed and count. The system could be used to collect vehicle speed and count data as well as weight information. Acoustic emissions are naturally occurring elastic waves produced by the rapid release of energy within a material. They are caused by deformation or fracturing of a solid due to thermal or mechanical stress. Acoustic emission sensors have been developed to detect these waves and computer software and hardware have been developed to analyze and provide information about the waveforms. Acoustic emission testing is a common form of nondestructive testing and is used for pressure vessel testing, leak detection, machinery monitoring, structural integrity monitoring, and weld monitoring, among other things (Miller, 1987). For this dissertation, acoustic emission parameters were correlated to the load placed on the metal test bar to determine the feasibility of using a metal test bar to measure the weight of a vehicle in motion. Several experiments were done. First, the concept was tested in a laboratory setting using an experimental apparatus. A concrete cylinder was mounted on a frame and rotated using a motor. The metal test bar was applied directly to the surface of the cylinder and acoustic emission sensors were attached to each end of the bar. As the cylinder rotated, a motorcycle tire was pushed up against the cylinder using a scissor jack to simulate different loads. The acoustic emission response in the metal test strip to the motorcycle tire rolling over it was detected by the acoustic emission sensors and analyzed by the computer. Initial examinations of the data showed a correlation between the force of the tire against the cylinder and the energy and count of the acoustic emissions. Subsequent field experiments were performed at a weigh station on I-95 in Flagler County, Florida. The proposed weigh-in-motion system (the metal test bar with attached acoustic emission sensors) was installed just downstream of the existing weigh-in-motion scale at the weigh station. Commercial vehicles were weighed on the weigh station weigh-in-motion scale and acoustic emission data was collected by the experimental system. Test data was collected over several hours on two different days, one in July 2008 and the other in April 2009. Initial examination of the data did not show direct correlation between any acoustic emission parameter and vehicle weight. As a result, a more sophisticated model was developed. Dimensional analysis was used to examine possible relationships between the acoustic emission parameters and the vehicle weight. In dimensional analysis, a dimensionally correct equation is formed using measurable parameters of a system. The dimensionally correct equation can then be tested using experimental data. Dimensional analysis revealed the possible relationships between the acoustic emission parameters and the vehicle weight. Statistical models for weight using the laboratory data and using the field data were developed. Dimensional analysis variables as well as other relevant measurable parameters were used in the development of the statistical models. The model created for the April 2009 dataset was validated, with only 27 lbs average error in the weight calculation as compared with the weight measurement made with the weigh station weigh-in-motion scale. The maximum percent error for the weight calculation was 204%, with about 65% of the data falling within 30% error. Additional research will be needed to develop an acoustic emission weigh-in-motion system with adequate accuracy for a commercial product. Nevertheless, this dissertation presents a valuable contribution to the effort of developing a low-cost acoustic emission weigh-in-motion scale. Future research needs that were identified as part of this dissertation include: Examination of the effects of pavement type (flexible or rigid), vehicle speeds greater than 50 mph, and temperature Determination of the best acoustic emission sensor for this system Exploration of the best method to separate the data from axles which pass over the equipment close together in time (such as tandem axles) Exploration of the effect of repeated measures on improving the accuracy of the system.
Show less - Date Issued
- 2011
- Identifier
- CFE0003581, ucf:48903
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003581
- Title
- Fusing Freight Analysis Framework and Transearch Data: An Econometric Data Fusion Approach.
- Creator
-
Momtaz, Salah Uddin, Eluru, Naveen, Abdel-Aty, Mohamed, Anowar, Sabreena, Zheng, Qipeng, University of Central Florida
- Abstract / Description
-
A major hurdle in freight demand modeling has always been the lack of adequate data on freight movements for different industry sectors for planning applications. Freight Analysis Framework (FAF), and Transearch (TS) databases contain annualized commodity flow data. The primary motivation for our study is the development of a fused database from FAF and TS to realize transportation network flows at a fine spatial resolution (county-level) while accommodating for production and consumption...
Show moreA major hurdle in freight demand modeling has always been the lack of adequate data on freight movements for different industry sectors for planning applications. Freight Analysis Framework (FAF), and Transearch (TS) databases contain annualized commodity flow data. The primary motivation for our study is the development of a fused database from FAF and TS to realize transportation network flows at a fine spatial resolution (county-level) while accommodating for production and consumption behavioral trends (provided by TS). Towards this end, we formulate and estimate a joint econometric model framework grounded in maximum likelihood approach to estimate county-level commodity flows. The algorithm is implemented for the commodity flow information from 2012 FAF and 2011 TS databases to generate transportation network flows for 67 counties in Florida. The data fusion process considers several exogenous variables including origin-destination indicator variables, socio-demographic and socio-economic indicators, and transportation infrastructure indicators. Subsequently, the algorithm is implemented to develop freight flows for the Florida region considering inflows and outflows across the US and neighboring countries. The base year models developed are employed to predict future year data for years 2015 through 2040 in 5-year increments at the same spatial level. Furthermore, we disaggregate the county level flows obtained from algorithm to a finer resolution - statewide transportation analysis zone (SWTAZ) defined by the FDOT. The disaggregation process allocates truck-based commodity flows from a 79-zone system to an 8835-zone system. A two-stage factor multiplication method is proposed to disaggregate the county flow to SWTAZ flow. The factors are estimated both at the origin and destination level using a random utility factional split model approach. Eventually, we conducted a sensitivity analysis of the parameterization by evaluating the model structure for different numbers of intermediate stops in a route and/or the number of available routes for the origin-destinations.
Show less - Date Issued
- 2018
- Identifier
- CFE0007763, ucf:52384
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007763