Current Search: fuel cell (x)
-
-
Title
-
SOLAR AND FUEL CELL CIRCUIT MODELING, ANALYSIS AND INTEGRATIONS WITH POWER CONVERSION CIRCUITS FOR DISTRIBUTED GENERATION.
-
Creator
-
Krishnamurthy, Smitha, Yuan, Jiann, University of Central Florida
-
Abstract / Description
-
Renewable energy is considered to be one of the most promising alternatives for the growing energy demand in response to depletion of fossil fuels and undesired global warming issue. With such perspective, Solar Cells and Fuel Cells are most viable, environmentally sound, and sustainable energy sources for power generation. Solar and Fuel cells have created great interests in modern applications including distributed energy generation to provide clean energy. The purpose of this thesis was to...
Show moreRenewable energy is considered to be one of the most promising alternatives for the growing energy demand in response to depletion of fossil fuels and undesired global warming issue. With such perspective, Solar Cells and Fuel Cells are most viable, environmentally sound, and sustainable energy sources for power generation. Solar and Fuel cells have created great interests in modern applications including distributed energy generation to provide clean energy. The purpose of this thesis was to perform a detailed analysis and modeling of Solar and Fuel cells using Cadence SPICE, and to investigate dynamic interactions between the modules and power conversion circuits. Equivalent electronic static and dynamic models for Solar and Fuel Cells, their electrical characteristics, and typical power loss mechanisms associated with them are demonstrated with simulation results. Power conversion circuits for integration with the dynamic models of these renewable low voltage sources are specifically chosen to boost and regulate the input low dc voltage from the modules. The scope of this work was to analyze and model solar and fuel cells to study their terminal characteristics, power loss mechanisms, modules and their dynamics when interfaced with power converters, which would lead to better understanding of these renewable sources in power applications.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002815, ucf:48100
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002815
-
-
Title
-
PREPARATION AND CHARACTERISATION OF STABILIZED NAFION/PHOSPHOTUNGSTIC ACID COMPOSITE MEMBRANES FOR PROTON EXCHANGE MEMBRANE FUEL CELL (PEMFC) AUTOMOBILE ENGINES.
-
Creator
-
Agarwal, Rohit, Fenton, James, University of Central Florida
-
Abstract / Description
-
Membrane durability is one of the limiting factors for proton exchange membrane fuel cell (PEMFC) commercialisation by limiting the lifetime of the membrane via electrochemical / mechanical / thermal degradation. Lower internal humidity in the membrane at high temperature (>100 oC) and low relative humidity (25-50 %RH) operating conditions leads to increased resistance, lowering of performance and higher degradation rate. One of the promising candidates is composite proton exchange membranes ...
Show moreMembrane durability is one of the limiting factors for proton exchange membrane fuel cell (PEMFC) commercialisation by limiting the lifetime of the membrane via electrochemical / mechanical / thermal degradation. Lower internal humidity in the membrane at high temperature (>100 oC) and low relative humidity (25-50 %RH) operating conditions leads to increased resistance, lowering of performance and higher degradation rate. One of the promising candidates is composite proton exchange membranes (CPEMs) which have heteropoly acid (HPA) e.g. Phosphotungstic acid (PTA) doped throughout the Nafion® matrix. HPA is primarily responsible for carrying intrinsic water which reduces the external water dependence. The role of relative humidity during membrane casting was studied using surface analysis tools such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Thermo-gravimetric analysis (TGA), and Scanning electron microscopy (SEM) / Energy dispersive spectrometer (EDS). Membrane casting at lower relative humidity (30% approx.) results in finer size, and better PTA incorporation in the composite membrane. The effect of increase in PTA concentration in the Nafion matrix was studied with regards to conductivity, performance and durability. In-plane conductivity measurements were performed at 80 oC and 120 oC. During theses measurements, relative humidity was varied from 20% to 100% RH. Membrane conductivity invariably increases on increasing the relative humidity or operating temperature of the cell. Membrane conductivity increases with increasing PTA content from 3% to 25% PTA but never reaches the conductivity of membrane with 0% PTA. Possible explanation might be the role of cesium in PTA stabilisation process. Cesium forms a complex compound with PTA inside host matrix, rendering the PTA incapable of holding water. In plane conductivity measurements only measure surface conductivity, hence another reason might be the existence of a PTA skin on the membrane surface which is not truly representative of the whole membrane. XRD revealed that the structure of the composite membrane changes significantly on addition of PTA. Membrane with 3% PTA has structure similar to Nafion® and does not exhibit the characteristic 25o and 35o 2Ө peaks while membrane with 15% PTA and 25% PTA have strong characteristic PTA peaks. Also the membrane structure with 25% PTA matches well with that of PTA.6H2O. By applying the Scherer formula, PTA particle size was calculated from Full width half maximum (FWHM) studies at 17o 2Ө peak of the membranes. Particles coalesce on increasing the PTA concentration in the membrane leading to larger particles but still all particles were in nanometer range. Also the FWHM of membranes decreased at 17o 2Ө peak on increasing the PTA concentration, leading to higher crystallinity in the membrane. Structure analysis by FTIR indicated increase in PTA signature intensity dips, as the PTA concentration in membrane increases from 0-25%. Also by FTIR studies, it was found that some PTA is lost during the processing step as shown by comparison of as cast and protonated spectra. Possible reasoning might be that some amount of PTA does not gets cesium stabilized which gets leached away during processing. TGA studies were performed which showed no signs of early thermal degradation (temperature >300 oC); hence the assumption that all membranes are thermally robust for intended fuel cell applications. The membranes with different amounts of PTA were then catalyst coated and tested for 100-hour at open circuit voltage (OCV), 30% RH and 90 oC. By increasing the PTA in the host Nafion® matrix, the percent change in fuel crossover decreases, percent change in ECA increases, cathode fluoride emission rate decreases, and percent change in OCV decreases after the 100 hour test. Possible reasons for decreasing percentage of fuel crossover might be the increased internal humidity of the membrane due to increasing PTA incorporation. It is reported that during higher relative humidity operation, there is decrease in fuel crossover rate. Increasing ECA percentage loss might be due to the fact that HPA in the membrane can get adsorbed on the catalyst sites, rendering the sites inactive for redox reaction. Decrease in cathode fluorine emission rate (FER) might be due to the fact that there is more water available internally in the membrane as compared to Nafion®. It is reported that at higher relative humidity, FER decreases. ECA and crossover both contribute to the OCV losses. Higher component of OCV is crossover loss, which results in mixed potentials. Hence decreasing percentage of crossover might be the reason behind the decreasing OCV loss. Initial performance of fuel cell increases with increasing PTA concentration, but after the 100 hour test, higher PTA membrane exhibited highest performance loss. Increasing initial fuel cell performance can be due to the lowering of resistance due to PTA addition. Increasing ECA losses might be responsible for the increasing performance losses on adding more PTA to host membrane.
Show less
-
Date Issued
-
2008
-
Identifier
-
CFE0002486, ucf:47677
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002486
-
-
Title
-
OPTIMAL SINTERING TEMPERATURE OF CERIA-DOPED SCANDIA STABILIZED ZIRCONIA FOR USE IN SOLID OXIDE FUEL CELLS.
-
Creator
-
Assuncao, Amanda K, Orlovskaya, Nina, University of Central Florida
-
Abstract / Description
-
Carbon emissions are known to cause decay of the Ozone layer in addition to creating pollutant, poisonous air. This has become a growing concern among scientists and engineers across the globe; if this issue is not addressed, it is likely that the Earth will suffer catastrophic consequences. One of the main culprits of these harmful carbon emissions is fuel combustion. Between vehicles, power plants, airplanes, and ships, the world consumes an extraordinary amount of oil and fuel which all...
Show moreCarbon emissions are known to cause decay of the Ozone layer in addition to creating pollutant, poisonous air. This has become a growing concern among scientists and engineers across the globe; if this issue is not addressed, it is likely that the Earth will suffer catastrophic consequences. One of the main culprits of these harmful carbon emissions is fuel combustion. Between vehicles, power plants, airplanes, and ships, the world consumes an extraordinary amount of oil and fuel which all contributes to the emissions problem. Therefore, it is crucial to develop alternative energy sources that minimize the impact on the environment. One such technology that is currently being researched, is the Solid Oxide Fuel Cell (SOFC). This is a relatively simple device that converts chemical energy into electrical energy with no harmful emissions. For these devices to work properly, they require an electrolyte material that has high ionic conductivity with good phase stability at a variety of temperatures. The research presented in this study will concentrate intensively on just one of the many candidates for SOFC electrolytes. 1 mol% CeO2 - 10 mol% Sc2O3 - 89 mol% ZrO2 manufactured by Treibacher Industries was analyzed to better understand its sintering properties, phase stability, and molecular structure. Sintering was performed at temperatures ranging from 900oC to 1600oC and the shrinkage, density and porosity were examined for each temperature. Raman Spectroscopy and X-Ray Powder Diffraction were also conducted for comparison with other known compositions to see if the powder undergoes any phase transitions or instability.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFH2000408, ucf:45894
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH2000408
-
-
Title
-
Electrochemical Studies of Nanoscale Composite Materials as Electrodes in PEM Fuel Cells.
-
Creator
-
Anderson, Jordan, Zhai, Lei, Blair, Richard, Hampton, Michael, Zou, Shengli, Seal, Sudipta, University of Central Florida
-
Abstract / Description
-
Polymer electrolyte membrane fuel cells (PEMFCs) have recently acquired much attention as alternatives to combustion engines for power conversion. The primary interest in fuel cell technology is the possibility of 60% power conversion efficiency as compared to the 30% maximum theoretical efficiency limited to combustion engines and turbines. Although originally conceived to work with hydrogen as a fuel, difficulties relating to hydrogen storage have prompted much effort in using other fuels....
Show morePolymer electrolyte membrane fuel cells (PEMFCs) have recently acquired much attention as alternatives to combustion engines for power conversion. The primary interest in fuel cell technology is the possibility of 60% power conversion efficiency as compared to the 30% maximum theoretical efficiency limited to combustion engines and turbines. Although originally conceived to work with hydrogen as a fuel, difficulties relating to hydrogen storage have prompted much effort in using other fuels. Small organic molecules such as alcohols and formic acid have shown promise as alternatives to hydrogen in PEMFCs due to their higher stability at ambient conditions. The drawbacks for using these fuels in PEMFCs are related to their incomplete oxidation mechanisms, which lead to the production of carbon monoxide (CO). When carbon monoxide is released in fuel cells it binds strongly to the platinum anode thus limiting the adsorption and subsequent oxidation of more fuel. In order to promote the complete oxidation of fuels and limit poisoning due to CO, various metal and metal oxide catalysts have been used.Motivated by promising results seen in fuel cell catalysis, this research project is focused on the design and fabrication of novel platinum-composite catalysts for the electrooxidation of methanol, ethanol and formic acid. Various Pt-composites were fabricated including Pt-Au, Pt-Ru, Pt-Pd and Pt-CeO2 catalysts. Electrochemical techniques were used to determine the catalytic ability of each novel composite toward the electrooxidation of methanol, ethanol and formic acid. This study indicates that the novel composites all have higher catalytic ability than bare Pt electrodes. The increase in catalytic ability is mostly attributed to the increase in CO poison tolerance and promotion of the complete oxidation mechanism of methanol, ethanol and formic acid. Formulations including bi- and tri-composite catalysts were fabricated and in many cases show the highest catalytic oxidation, suggesting tertiary catalytic effects. The combination of bi-metallic composites with ceria also showed highly increased catalytic oxidation ability. The following dissertation expounds on the relationship between composite material and the electrooxidation of methanol, ethanol and formic acid. The full electrochemical and material characterization of each composite electrode is provided.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004510, ucf:49264
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004510
-
-
Title
-
Manufacturing of Single Solid Oxide Fuel Cells.
-
Creator
-
Torres-Caceres, Jonathan, Orlovskaya, Nina, Xu, Yunjun, Das, Tuhin, University of Central Florida
-
Abstract / Description
-
Solid oxide fuel cells (SOFCs) are devices that convert chemical energy into electrical energy and have the potential to become a reliable renewable energy source that can be used on a large scale. SOFCs have 3 main components; the electrolyte, the anode, and the cathode. Typically, SOFCs work by reducing oxygen at the cathode into O2- ions which are then transported via the electrolyte to the anode to combine with a fuel such as hydrogen to produce electricity. Research into better materials...
Show moreSolid oxide fuel cells (SOFCs) are devices that convert chemical energy into electrical energy and have the potential to become a reliable renewable energy source that can be used on a large scale. SOFCs have 3 main components; the electrolyte, the anode, and the cathode. Typically, SOFCs work by reducing oxygen at the cathode into O2- ions which are then transported via the electrolyte to the anode to combine with a fuel such as hydrogen to produce electricity. Research into better materials and manufacturing methods is necessary to reduce costs and improve efficiency to make the technology commercially viable.The goal of the research is to optimize and simplify the production of single SOFCs using high performance ceramics. This includes the use of 8mol% Y2O3-ZrO2 (YSZ) and 10mol% Sc2O3-1mol%CeO2-ZrO2 (SCSZ) layered electrolytes which purport higher conductivity than traditional pure YSZ electrolytes. Prior to printing the electrodes onto the electrolyte, the cathode side of the electrolyte was coated with 20mol% Gd2O3-CeO2 (GDC). The GDC coating prevents the formation of a nonconductive La2Zr2O7 pyrochlore layer, which forms due to the interdiffusion of the YSZ electrolyte ceramic and the (La0.6Sr0.4)0.995Fe0.8Co0.2O3 (LSCF) cathode ceramic during sintering. The GDC layer was deposited by spin coating a suspension of 10wt% GDC in ethanol onto the electrolyte. Variation of parameters such as time, speed, and ramp rate were tested. Deposition of the electrodes onto the electrolyte surface was done by screen printing. Ink was produced using a three roll mill from a mixture of ceramic electrode powder, terpineol, and a pore former. The pore former was selected based on its ability to form a uniform well-connected pore matrix within the anode samples that were pressed and sintered. Ink development involved the production of different ratios of powder-to-terpineol inks to vary the viscosity. The different inks were used to print electrodes onto the electrolytes to gauge print quality and consistency. Cells were produced with varying numbers of layers of prints to achieve a desirable thickness. Finally, the densification behaviors of the major materials used to produce the single cells were studied to determine the temperatures at which each component needs to be sintered to achieve the desired density and to determine the order of electrode application, so as to avoid over-densification of the electrodes. Complete cells were tested at the National Energy Technology Laboratory in Morgantown, WV. Cells were tested in a custom-built test stand under constant voltage at 800(&)deg;C with 3% humidified hydrogen as the fuel. Both voltage-current response and impedance spectroscopy tests were conducted after initial startup and after 20 hours of operation. Impedance tests were performed at open circuit voltage and under varying loads in order to analyze the sources of resistance within the cell. A general increase in impedance was found after the 20h operation. Scanning electron micrographs of the cell microstructures found delamination and other defects which reduce performance. Suggestions for eradicating these issues and improving performance have been made.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0004946, ucf:49641
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004946
-
-
Title
-
Numerical Simulation of Electrolyte-Supported Planar Button Solid Oxide Fuel Cell.
-
Creator
-
Aman, Amjad, Orlovskaya, Nina, Xu, Yunjun, Das, Tuhin, University of Central Florida
-
Abstract / Description
-
Solid Oxide Fuel Cells are fuel cells that operate at high temperatures usually in the range of 600oC to 1000oC and employ solid ceramics as the electrolyte. In Solid Oxide Fuel Cells oxygen ions (O2-) are the ionic charge carriers. Solid Oxide Fuel Cells are known for their higher electrical efficiency of about 50-60% [1] compared to other types of fuel cells and are considered very suitable in stationary power generation applications. It is very important to study the effects of different...
Show moreSolid Oxide Fuel Cells are fuel cells that operate at high temperatures usually in the range of 600oC to 1000oC and employ solid ceramics as the electrolyte. In Solid Oxide Fuel Cells oxygen ions (O2-) are the ionic charge carriers. Solid Oxide Fuel Cells are known for their higher electrical efficiency of about 50-60% [1] compared to other types of fuel cells and are considered very suitable in stationary power generation applications. It is very important to study the effects of different parameters on the performance of Solid Oxide Fuel Cells and for this purpose the experimental or numerical simulation method can be adopted as the research method of choice. Numerical simulation involves constructing a mathematical model of the Solid Oxide Fuel Cell and use of specifically designed software programs that allows the user to manipulate the model to evaluate the system performance under various configurations and in real time. A model is only usable when it is validated with experimental results. Once it is validated, numerical simulation can give accurate, consistent and efficient results. Modeling allows testing and development of new materials, fuels, geometries, operating conditions without disrupting the existing system configuration. In addition, it is possible to measure internal variables which are experimentally difficult or impossible to measure and study the effects of different operating parameters on power generated, efficiency, current density, maximum temperatures reached, stresses caused by temperature gradients and effects of thermal expansion for electrolytes, electrodes and interconnects.Since Solid Oxide Fuel Cell simulation involves a large number of parameters and complicated equations, mostly Partial Differential Equations, the situation calls for a sophisticated simulation technique and hence a Finite Element Method (FEM) multiphysics approach will be employed. This can provide three-dimensional localized information inside the fuel cell. For this thesis, COMSOL Multiphysics(&)#174; version 4.2a will be used for simulation purposes because it has a Batteries (&) Fuel Cells module, the ability to incorporate custom Partial Differential Equations and the ability to integrate with and utilize the capabilities of other tools like MATLAB(&)#174;, Pro/Engineer(&)#174;, SolidWorks(&)#174;. Fuel Cells can be modeled at the system or stack or cell or the electrode level. This thesis will study Solid Oxide Fuel Cell modeling at the cell level. Once the model can be validated against experimental data for the cell level, then modeling at higher levels can be accomplished in the future. Here the research focus is on Solid Oxide Fuel Cells that use hydrogen as the fuel. The study focuses on solid oxide fuel cells that use 3-layered, 4-layered and 6-layered electrolytes using pure YSZ or pure SCSZ or a combination of layers of YSZ and SCSZ. A major part of this research will be to compare SOFC performance of the different configurations of these electrolytes. The cathode and anode material used are (La0.6Sr0.4)0.95-0.99Co0.2Fe0.8O3 and Ni-YSZ respectively.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004349, ucf:49431
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004349
-
-
Title
-
A multi-scale approach to study Solid Oxide Fuel Cells: from Mechanical Properties and Crystal Structure of the Cell's Materials to the Development of an Interactive and Interconnected Educational Tool.
-
Creator
-
Aman, Amjad, Orlovskaya, Nina, Xu, Yunjun, Das, Tuhin, University of Central Florida
-
Abstract / Description
-
Solid Oxide Fuel Cells are energy conversion devices that convert chemical energy of a fuel directly into electrical energy. They are known for being fuel-flexible, have minimal harmful emissions, ideal for combined heat and power applications, highly energy-efficient when combined with gas or steam turbines. The current challenges facing the widespread adoption these fuel cells include cost reduction, long-term testing of fully integrated systems, improving the fuel cell stack and system...
Show moreSolid Oxide Fuel Cells are energy conversion devices that convert chemical energy of a fuel directly into electrical energy. They are known for being fuel-flexible, have minimal harmful emissions, ideal for combined heat and power applications, highly energy-efficient when combined with gas or steam turbines. The current challenges facing the widespread adoption these fuel cells include cost reduction, long-term testing of fully integrated systems, improving the fuel cell stack and system performance, and studies related to reliability, robustness and durability. The goal of this dissertation is to further the understanding of the mechanical properties and crystal structure of materials used in the cathode and electrolyte of solid oxide fuel cells, as well as to report on the development of a supplementary educational tool that could be used in course related to fuel cells. The first part of the dissertation relates to the study of LaCoO3 based perovskites that are used as cathode material in solid oxide fuel cells and in other energy-related applications. In-situ neutron diffraction of LaCoO3 perovskite during uniaxial compression was carried out to study crystal structure evolution and texture development. In this study, LaCoO3 was subjected to two cycles of uniaxial loading and unloading with the maximum stress value being 700-900 MPa. The in-situ neutron diffraction revealed the dynamic crystallographic changes occurring which is responsible for the non-linear ferroelastic deformation and the appearance of hysteresis in LaCoO3. At the end of the first cycle, irreversible strain was observed even after the load was removed, which is caused by non-recoverable domain reorientation and texture development. At the end of the second cycle, however, no irreversible strain was observed as domain reorientation seemed fully recovered. Elastic constants were calculated and Young's modulus was estimated for LaCoO3 single crystals oriented along different crystallographic directions. The high temperature mechanical behavior study of LaCoO3 based perovskites is also of prime importance as solid oxide fuel cells operate at high temperatures. Incidentally, it was observed that as opposed to the behavior of most materials, LaCoO3 exhibits stiffening between 700 oC to 900 oC, with the Young's modulus going from a value of ~76 GPa at room temperature to ~120 GPa at 900 oC. In-situ neutron diffraction, XRD and Raman spectroscopy were used to study structural changes occurring in the material as it was heated. The results from these experiments will be discussed.The next portion of the dissertation will focus on electrolytes. Numerical simulation was carried out in order to predict the non-linear load-stress relationship and estimation of biaxial flexure strength in layered electrolytes, during ring-on-ring mechanical testing.Finally, the development of an interactive and inter-connected educational software is presented that could serve as a supplementary tool to teach fuel cell related topics.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFE0006436, ucf:51467
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006436
-
-
Title
-
PHYSICOCHEMICAL AND THERMOCHEMICAL PROPERTIES OF SULFONATED POLY(ETHERETHERKETONE) ELECTROLYTE MEMBRANES.
-
Creator
-
Rhoden, Stephen, Diaz, Diego, University of Central Florida
-
Abstract / Description
-
Fuel cells have long been seen as an alternative to combustion powered and diesel powered engines and turbines. Production of energy via a fuel cell conversion method can generate up to 60% efficiency in comparison to 30% using a combustion powered engine, with low co-production of harmful side-products. The polymer electrolyte membrane (PEM) adapted for the fuel cell application is one of the main components that determines the overall efficiency. This research project was focused towards...
Show moreFuel cells have long been seen as an alternative to combustion powered and diesel powered engines and turbines. Production of energy via a fuel cell conversion method can generate up to 60% efficiency in comparison to 30% using a combustion powered engine, with low co-production of harmful side-products. The polymer electrolyte membrane (PEM) adapted for the fuel cell application is one of the main components that determines the overall efficiency. This research project was focused towards novel PEMs, such as sulfonated poly(etheretherketone) or SPEEK, which are cost-efficient and robust with high proton conductivities under hydrated conditions. The degree of sulfonation (DS) of a particular SPEEK polymer determines the proton conducting ability, as well as the long term durability. For SPEEK with high DS, the proton conduction is facile, but the mechanical stability of the polymer decreases almost proportionally. While low DS SPEEK does not have sufficient sulfonic acid density for fast proton conduction in the membrane, the membrane keeps its mechanical integrity under fully saturated conditions. The main purpose of this work was to address both issues encountered with SPEEK sulfonated to low and high DS. The addition of both solid acids and synthetic cross-links were studied to address the main downfalls of the respective SPEEK polymers. Optimization of these techniques led to increased understanding of PEMs and notably better electrochemical performance of these fuel cell materials. Oxo-acids such as tungsten (VI) oxide (WO3) and phosphotungstic acid (PTA) have been identified as candidate materials for creating SPEEK composite membranes. The chemistry of these oxo-acids is well known, with their use as highly acidic catalyst centers adopted for countless homogeneous and heterogeneous, organic and inorganic reactions. Uniform dispersion of WO3 hydrate in SPEEK solution was done by a sol-gel process in which the filler particles were grown in an ionomer solution, cast and allowed to dry. PTA composites were made by adding the solid acid directly to a solution of the ionomer and casting. The latter casting was allowed to dry and Cs+- exchanged to stabilize the PTA from dissolution and leaching from the membrane. The chemical and physical properties of these membranes were characterized and evaluated using mainly conductometric and X-ray photoelectron spectroscopic methods. Composite SPEEK/ PTA membranes showed a 50% decrease in PEM resistance under hydrogen fuel cell testing conditions, while SPEEK/ WO3 composites demonstrated a ten-fold increase in the membrane's in-plane proton conductivity. The chemical and physical properties of these composites changed with respect to their synthesis and fabrication procedures. This study will expound upon their relations.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003470, ucf:48976
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003470
-
-
Title
-
INVESTIGATION OF NANOCERIA-MODIFIED PLATINUM-GOLD COMPOSITE ELECTRODES FOR THE ELECTROCHEMICAL REDUCTION OF OXYGEN IN ALKALINE MEDIA.
-
Creator
-
Hegishte, Rahul, Diaz, Diego, University of Central Florida
-
Abstract / Description
-
Platinum-gold and nanoceria-modified platinum-gold electrodes were prepared on a platinum surface via electrochemical reduction of solutions of platinum and gold salts in the dispersion of nanoceria. The molar ratios of Pt and Au were varied in both PtAu and PtAu/CeO2 electrodes while the total concentration of the metals was maintained at 2 x 10-3M and the concentration of nanoceria was maintained constant at 5 x 10-3M. The electrodes were characterized by their cyclic voltammetry curves in...
Show morePlatinum-gold and nanoceria-modified platinum-gold electrodes were prepared on a platinum surface via electrochemical reduction of solutions of platinum and gold salts in the dispersion of nanoceria. The molar ratios of Pt and Au were varied in both PtAu and PtAu/CeO2 electrodes while the total concentration of the metals was maintained at 2 x 10-3M and the concentration of nanoceria was maintained constant at 5 x 10-3M. The electrodes were characterized by their cyclic voltammetry curves in 0.5M sulfuric acid solution. The electrochemically active area of the electrodes was determined using the copper underpotential deposition method. The linear sweep voltammograms of the PtAu and PtAu/CeO2 electrodes were plotted from -1V to 0V vs. Ag/AgCl, 3M KCl reference electrode using the rotating disk electrodes for the rotation speeds from 200 to 3600rpm in an oxygen saturated 0.1M sodium hydroxide solution. The values of the kinetic controlled current density were determined from the rotating disk voltammetry. The values of the limiting current density for each rotation speed were used to plot the Koutecky-Levich plots for the electrodes. The rate constants were obtained from the Koutecky-Levich plots for each composition of the electrode. The values of kinetic current density and the rate constants indicated that the addition of Au enhances the ORR rates in both the PtAu and the PtAu/CeO2 electrodes. The values of the kinetic current densities of the PtAu/CeO2 were lower than that of the PtAu electrodes owing to the poor electrical conductivity of ceria. The Koutecky-Levich plots for the PtAu and the PtAu/CeO2 electrodes are linear for the four-electron reduction of oxygen in the alkaline media, which indicates that the overall reaction follows the first order kinetics. The electron transfer rate constants obtained from the Koutecky-Levich plots for the PtAu and the PtAu/CeO2 electrodes both were found to increase in values with the addition of Au. The Tafel plots were plotted for the PtAu and PtAu/CeO2 electrodes and the values of Tafel slopes were found to be in a small range for lower amounts of Au which indicated that the ORR rates were enhanced in lower amounts of Au. The values of Tafel slopes were found to be much higher for the ceria-modified PtAu electrodes as compared to the PtAu electrodes, which indicate the lower rates of ORR after the modification with ceria. Also, the ORR rates for the electrodes with smaller amounts of Au in PtAu/CeO2 were higher than those in the larger amounts of Au.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0003639, ucf:48860
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003639
-
-
Title
-
Scandia and ceria stabilized zirconia based electrolytes and anodes for intermediate temperature solid oxide fuel cells: Manufacturing and properties.
-
Creator
-
Chen, Yan, Orlovskaya, Nina, An, Linan, Chen, Quanfang, Sohn, Yongho, Raghavan, Seetha, Huang, Xinyu, University of Central Florida
-
Abstract / Description
-
Scandia and ceria stabilized zirconia (10 mol% Sc2O3 (-) 1 mol% CeO2 (-) ZrO2, SCSZ) has superior ionic conductivity in the intermediate temperature range for the operation of solid oxide fuel cells, but it does not exhibit good phase stability in comparison with yttria stabilized zirconia (8 mol% Y2O3 (-) ZrO2, YSZ). To maintain high ionic conductivity and improve the stability of the electrolyte, layered structures with YSZ outer layers and SCSZ inner layers were designed, along with the...
Show moreScandia and ceria stabilized zirconia (10 mol% Sc2O3 (-) 1 mol% CeO2 (-) ZrO2, SCSZ) has superior ionic conductivity in the intermediate temperature range for the operation of solid oxide fuel cells, but it does not exhibit good phase stability in comparison with yttria stabilized zirconia (8 mol% Y2O3 (-) ZrO2, YSZ). To maintain high ionic conductivity and improve the stability of the electrolyte, layered structures with YSZ outer layers and SCSZ inner layers were designed, along with the referential electrolytes containing pure SCSZ or YSZ. The electrolytes were manufactured by tape casting, laminating, and pressureless sintering techniques. After sintering, while the thickness of YSZ outer layers remained constant at ~30 ?m, the thickness of inner layers of SCSZ for the 3-, 4- and 6-layer designs varied at ~30, ~60 and ~120 ?m, respectively. Selected characterizations were employed to study the structure, morphology, impurity content and the density of the electrolytes. Furthermore, in situ X-ray diffraction, neutron diffraction and Raman scattering were carried out to study the phase transition and lattice distortion during long-term annealing at 350 (&)deg;C and 275 (&)deg;C for SCSZ and YSZ, respectively, where the dynamic damping occurred when Young's modulus was measured.In YSZ/SCSZ electrolytes, thermal residual stresses and strains were generated due to the mismatch of coefficients of thermal expansion from each layer of different compositions. They could be adjusted by varying the thickness ratios of each layer in different designs of laminates. The theoretical residual stresses have been calculated for different thickness ratios. The effect of thermal residual stress on the biaxial flexural strength was studied in layered electrolytes. The biaxial flexure tests of electrolytes with various layered designs were performed using a ring-on-ring method at both room temperature and 800 (&)deg;C. The maximum principal stress during fracture indicated an increase of flexural strength in the electrolytes with layered structure at both temperatures in comparison with the electrolytes without compositional gradient. Such an increase of strength is the result of the existence of residual compressive stresses in the outer YSZ layer. In addition, Weibull statistics of the strength values were built for the layered electrolytes tested at room temperature, and the effect of thermal residual stresses on Weibull distribution was established. The calculation of residual stress present at the outer layers was verified. The high ionic conductivity was maintained with layered electrolyte designs in the intermediate temperature range. It was also established that the ionic conductivity of layered electrolytes exhibited 7% (-) 11% improvement at 800 (&)deg;C due to the stress/strain effects, and the largest improvements in a certain electrolyte was found to nearly coincide with the largest residual compressive strain in the outer YSZ layer.In addition to the study of layered electrolytes, mechanical properties of porous Ni/SCSZ cermet were studied. The anode materials were reduced by 65 wt% NiO (-) 35 wt% SCSZ (N65) and 50 wt% NiO (-) 50 wt% SCSZ (N50) porous ceramics in the forming gas. Young's modulus as well as strength and fracture toughness of non-reduced and reduced anodes has been measured, both at room and high temperatures. High temperature experiments were performed in the reducing environment of forming gas. It was shown that while at 700 (&)deg;C and 800 (&)deg;C the anode specimens exhibited purely brittle deformation, a brittle-to-ductile transition occurred at 800 (-) 900 (&)deg;C, and the anode deformed plastically at 900 (&)deg;C. Fractography of the anode specimens were studied to identify the fracture modes of the anodes tested at different temperatures.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0005090, ucf:50750
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005090
-
-
Title
-
The Behavior of Cerium Oxide Nanoparticles in Polymer Electrolyte Membranes in Ex-Situ and In-Situ Fuel Cell Durability Tests.
-
Creator
-
Pearman, Benjamin, Hampton, Michael, Blair, Richard, Clausen, Christian, Seal, Sudipta, Campiglia, Andres, Yestrebsky, Cherie, Mohajeri, Nahid, University of Central Florida
-
Abstract / Description
-
Fuel cells are known for their high efficiency and have the potential to become a major technology for producing clean energy, especially when the fuel, e.g. hydrogen, is produced from renewable energy sources such as wind or solar. Currently, the two main obstacles to wide-spread commercialization are their high cost and the short operational lifetime of certain components.Polymer electrolyte membrane (PEM) fuel cells have been a focus of attention in recent years, due to their use of...
Show moreFuel cells are known for their high efficiency and have the potential to become a major technology for producing clean energy, especially when the fuel, e.g. hydrogen, is produced from renewable energy sources such as wind or solar. Currently, the two main obstacles to wide-spread commercialization are their high cost and the short operational lifetime of certain components.Polymer electrolyte membrane (PEM) fuel cells have been a focus of attention in recent years, due to their use of hydrogen as a fuel, their comparatively low operating temperature and flexibility for use in both stationary and portable (automotive) applications.Perfluorosulfonic acid membranes are the leading ionomers for use in PEM hydrogen fuel cells. They combine essential qualities, such as high mechanical and thermal stability, with high proton conductivity. However, they are expensive and currently show insufficient chemical stability towards radicals formed during fuel cell operation, resulting in degradation that leads to premature failure. The incorporation of durability improving additives into perfluorosulfonic acid membranes is discussed in this work.Cerium oxide (ceria) is a well-known radical scavenger that has been used in the biological and medical field. It is able to quench radicals by facilely switching between its Ce(III) and Ce(IV) oxidation states.In this work, cerium oxide nanoparticles were added to perfluorosulfonic acid membranes and subjected to ex-situ and in-situ accelerated durability tests.The two ceria formulations, an in-house synthesized and commercially available material, were found to consist of crystalline particles of 2 (-) 5 nm and 20 (-) 150 nm size, respectively, that did not change size or shape when incorporated into the membranes.At higher temperature and relative humidity in gas flowing conditions, ceria in membranes is found to be reduced to its ionic form by virtue of the acidic environment. In ex-situ Fenton testing, the inclusion of ceria into membranes reduced the emission of fluoride, a strong indicator of degradation, by an order of magnitude with both liquid and gaseous hydrogen peroxide. In open-circuit voltage (OCV) hold fuel cell testing, ceria improved durability, as measured by several parameters such as OCV decay rate, fluoride emission and cell performance, over several hundred hours and influenced the formation of the platinum band typically found after durability testing.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004789, ucf:49731
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004789
-
-
Title
-
Design, Development, and Testing of a Miniature Fixture for Uniaxial Compression of Ceramics Coupled with In-Situ Raman Spectrometer.
-
Creator
-
Jordan, Ryan, Orlovskaya, Nina, Kwok, Kawai, Ghosh, Ranajay, University of Central Florida
-
Abstract / Description
-
This thesis is about the design, development and integration of an in-situ compression stage which interfaces through the Leica optical microscope coupled with a Renishaw InVia micro-Raman spectrometer. This combined compression stage and Raman system will enable structural characterization of ceramics and ceramic composites. The in-situ compression stage incorporates a 440C stainless steel structural components, 6061 aluminum frame, a NEMA 23 stepper motor. Two load screws that allow to...
Show moreThis thesis is about the design, development and integration of an in-situ compression stage which interfaces through the Leica optical microscope coupled with a Renishaw InVia micro-Raman spectrometer. This combined compression stage and Raman system will enable structural characterization of ceramics and ceramic composites. The in-situ compression stage incorporates a 440C stainless steel structural components, 6061 aluminum frame, a NEMA 23 stepper motor. Two load screws that allow to apply compressive loads up to 14,137 N, with negligible off axis loading, achieving target stresses of 500 MPa for samples of up to 6.00 mm in diameter. The system will be used in the future to study the structural changes in ceramics and ceramic composites, as well as to study thermal residual stress redistribution under applied compressive loads. A broad variety of Raman active ceramics, including the traditional structural ceramics 3mol%Y2O3-ZrO2, B4C, SiC, Si3N4, as well as exotic materials such as LaCoO3 and other perovskites will be studied using this system. Calibration of the systems load cell was performed in the configured state using MTS universal testing machines. To ensure residual stresses from mounting the load cell did not invalidate the original calibration, the in-situ compression stage was tested once attached to the Renishaw Raman spectrometer using LaCoO3 ceramic samples. The Raman shift of certain peaks in LaCoO3 was detected indicative of the effect of the applied compressive stress on the ceramics understudy.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007824, ucf:52809
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007824