Current Search: hemodynamics (x)
View All Items
- Title
- MESHLESS HEMODYNAMICS MODELING AND EVOLUTIONARY SHAPE OPTIMIZATION OF BYPASS GRAFTS ANASTOMOSES.
- Creator
-
El Zahab, Zaher, Kassab, Alain, University of Central Florida
- Abstract / Description
-
Objectives: The main objective of the current dissertation is to establish a formal shape optimization procedure for a given bypass grafts end-to-side distal anastomosis (ETSDA). The motivation behind this dissertation is that most of the previous ETSDA shape optimization research activities cited in the literature relied on direct optimization approaches that do not guaranty accurate optimization results. Three different ETSDA models are considered herein: The conventional, the Miller cuff,...
Show moreObjectives: The main objective of the current dissertation is to establish a formal shape optimization procedure for a given bypass grafts end-to-side distal anastomosis (ETSDA). The motivation behind this dissertation is that most of the previous ETSDA shape optimization research activities cited in the literature relied on direct optimization approaches that do not guaranty accurate optimization results. Three different ETSDA models are considered herein: The conventional, the Miller cuff, and the hood models. Materials and Methods: The ETSDA shape optimization is driven by three computational objects: a localized collocation meshless method (LCMM) solver, an automated geometry pre-processor, and a genetic-algorithm-based optimizer. The usage of the LCMM solver is very convenient to set an autonomous optimization mechanism for the ETSDA models. The task of the automated pre-processor is to randomly distribute solution points in the ETSDA geometries. The task of the optimized is the adjust the ETSDA geometries based on mitigation of the abnormal hemodynamics parameters. Results: The results reported in this dissertation entail the stabilization and validation of the LCMM solver in addition to the shape optimization of the considered ETSDA models. The LCMM stabilization results consists validating a custom-designed upwinding scheme on different one-dimensional and two-dimensional test cases. The LCMM validation is done for incompressible steady and unsteady flow applications in the ETSDA models. The ETSDA shape optimization include single-objective optimization results in steady flow situations and bi-objective optimization results in pulsatile flow situations. Conclusions: The LCMM solver provides verifiably accurate resolution of hemodynamics and is demonstrated to be third order accurate in a comparison to a benchmark analytical solution of the Navier-Stokes. The genetic-algorithm-based shape optimization approach proved to be very effective for the conventional and Miller cuff ETSDA models. The shape optimization results for those two models definitely suggest that the graft caliber should be maximized whereas the anastomotic angle and the cuff height (in the Miller cuff model) should be chosen following a compromise between the wall shear stress spatial and temporal gradients. The shape optimization of the hood ETSDA model did not prove to be advantageous, however it could be meaningful with the inclusion of the suture line cut length as an optimization parameter.
Show less - Date Issued
- 2008
- Identifier
- CFE0002165, ucf:47927
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002165
- Title
- Computational Fluid Dynamics Proof of Concept and Analysis of a Self-Powered Fontan Circulation.
- Creator
-
Ni, Marcus, Kassab, Alain, Divo, Eduardo, Chopra, Manoj, University of Central Florida
- Abstract / Description
-
The Fontan circulation is a result of the last (third stage) surgical procedure to correct a single ventricle congenital cardiac disorder in children. Although the Fontan circulation has been successfully established in surgeries over the years, it is flawed and can lead in certain cases to pre-mature death. The main cause of this failure is due to increased pulmonary vascular resistance due to loss pulse pressure and blood flow. In healthy circulations, the heart pumps directly to the lungs,...
Show moreThe Fontan circulation is a result of the last (third stage) surgical procedure to correct a single ventricle congenital cardiac disorder in children. Although the Fontan circulation has been successfully established in surgeries over the years, it is flawed and can lead in certain cases to pre-mature death. The main cause of this failure is due to increased pulmonary vascular resistance due to loss pulse pressure and blood flow. In healthy circulations, the heart pumps directly to the lungs, where as (")Single Ventricle(") patients must use a single sided heart to supply blood to the rest of the body before the lungs. Improvements to the Fontan circulation have been proposed, but they require extensive care or external devices. We propose a (")Self-Powered(") Fontan circulation that will inject energy into the pulmonary system by adding an injection jet shunt (IJS) directly from the heart. The IJS will provide the pulse pressure, blood flow, and entrainment that the pulmonary vascular system needs to function at a healthy level. The difference between a healthy and sick Fontan circulation is 3-5[mmHg] in the IVC. The goal of the IJS is to cause this 3-5[mmHg] pressure drop in the IVC. In the analysis of the Fontan, ascertaining energy losses due to flow jet impingements and flow mixing is critical. Moreover, in order to better understand surgical alternatives is it important to have a robust multi-scale 0D-3D CFD analysis tool that permits investigation of surgical alternatives in a virtual physics-based environment. To this end, a lumped parameter model (LPM) is tightly coupled at the time step level with a full 3D computational fluid dynamics (CFD) model. Using this model scheme, the Fontan test section is no longer being modeled by the LPM. Therefore, it is not limited by the 0D nature of the vascular resistance, capacitance, and inertia bed model. The CFD can take over at the area of interest which accounts for flow directionality and momentum transfer that the LPM is unable to capture. To efficiently calculate optimal IJS configurations, a closed loop steady state model was created to solve a simplified Fontan circulation in 3D. Three models were created with several different optimized configurations, a synthetic model (average dimensions of 2-4 year-old Fontan patients), and two patient-specific models (10 and 24-year-old). The model configurations include changes in the IJS nozzle diameter and IJS placement along the pulmonary artery. These configurations are compared to a baseline model with no IJS. All three models suggest that the IJS helps to decrease IVC pressure while increasing pulse pressure and blood flow to the pulmonary system.
Show less - Date Issued
- 2017
- Identifier
- CFE0006630, ucf:51303
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006630
- Title
- Fluid Dynamics Modeling and Sound Analysis of a Bileaflet Mechanical Heart Valve.
- Creator
-
Khalili, Fardin, Mansy, Hansen, Kassab, Alain, Steward, Robert, Zaurin, Ricardo, University of Central Florida
- Abstract / Description
-
Cardiovascular disease (CVD) is one of the main causes of death in the world. Some CVD involve severe heart valve disease that require valve replacement. There are more than 300,000 heart valves implanted worldwide, and about 85,000 heart valve replacements in the US. Approximately half of these valves are mechanical. Artificial valves may dysfunction leading to adverse hemodynamic conditions. Understanding the normal and abnormal valve function is important as it help improve valve designs....
Show moreCardiovascular disease (CVD) is one of the main causes of death in the world. Some CVD involve severe heart valve disease that require valve replacement. There are more than 300,000 heart valves implanted worldwide, and about 85,000 heart valve replacements in the US. Approximately half of these valves are mechanical. Artificial valves may dysfunction leading to adverse hemodynamic conditions. Understanding the normal and abnormal valve function is important as it help improve valve designs. Modeling of heart valve hemodynamics using computational fluid dynamics (CFD) provides a comprehensive analysis of flow, which can potentially help explain clinical observations and support therapeutic decision-making. This detailed information might not be accessible with in-vivo measurements. On the other hand, finite element analysis (FEA), is an efficient way to analyze the interactions of blood flow with blood vessel and tissue layers. In this project both CFD and FEA simulations were performed to investigate the flow-induced sound generation and propagation of sound waves through a tissue-like material. This method is based on mapping the transient pressure (force) fluctuations on the vessel wall and solving for the structural vibrations in the frequency domain. These vibrations would then be detected as sound on the epidermal surface. Advantages of the methods used in the current study include: (a) capability of providing accurate solution with a faster solution time; (b) inclusion of the fluid(-)structure interaction between blood flow and the arterial wall; and (c) accurately capturing some of the spectral features of the velocity fluctuation measured over the epidermal surface.
Show less - Date Issued
- 2018
- Identifier
- CFE0007029, ucf:52038
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007029