Current Search: homotopy (x)


Title

Analytical solutions to nonlinear differential equations arising in physical problems.

Creator

Baxter, Mathew, Vajravelu, Kuppalapalle, Li, Xin, Mohapatra, Ram, Shuai, Zhisheng, Kassab, Alain, University of Central Florida

Abstract / Description

Nonlinear partial differential equations are difficult to solve, with many of the approximate solutions in the literature being numerical in nature. In this work, we apply the Homotopy Analysis Method to give approximate analytical solutions to nonlinear ordinary and partial differential equations. The main goal is to apply different linear operators, which can be chosen, to solve nonlinear problems. In the first three chapters, we study ordinary differential equations (ODEs) with one or two...
Show moreNonlinear partial differential equations are difficult to solve, with many of the approximate solutions in the literature being numerical in nature. In this work, we apply the Homotopy Analysis Method to give approximate analytical solutions to nonlinear ordinary and partial differential equations. The main goal is to apply different linear operators, which can be chosen, to solve nonlinear problems. In the first three chapters, we study ordinary differential equations (ODEs) with one or two linear operators. As we progress, we apply the method to partial differential equations (PDEs) and use several linear operators. The results are all purely analytical, meaning these are approximate solutions that we can evaluate at points and take their derivatives.Another main focus is error analysis, where we test how good our approximations are. The method will always produce approximations, but we use residual errors on the domain of the problem to find a measure of error.In the last two chapters, we apply similarity transforms to PDEs to transform them into ODEs. We then use the Homotopy Analysis Method on one, but are able to find exact solutions to both equations.
Show less

Date Issued

2014

Identifier

CFE0005303, ucf:50527

Format

Document (PDF)

PURL

http://purl.flvc.org/ucf/fd/CFE0005303


Title

ANALYTICAL AND NUMERICAL SOLUTIONS OF DIFFERENTIALEQUATIONS ARISING IN FLUID FLOW AND HEAT TRANSFER PROBLEMS.

Creator

Sweet, Erik, Vajravelu, Kuppalapalle, University of Central Florida

Abstract / Description

The solutions of nonlinear ordinary or partial differential equations are important in the study of fluid flow and heat transfer. In this thesis we apply the Homotopy Analysis Method (HAM) and obtain solutions for several fluid flow and heat transfer problems. In chapter 1, a brief introduction to the history of homotopies and embeddings, along with some examples, are given. The application of homotopies and an introduction to the solutions procedure of differential equations (used in the...
Show moreThe solutions of nonlinear ordinary or partial differential equations are important in the study of fluid flow and heat transfer. In this thesis we apply the Homotopy Analysis Method (HAM) and obtain solutions for several fluid flow and heat transfer problems. In chapter 1, a brief introduction to the history of homotopies and embeddings, along with some examples, are given. The application of homotopies and an introduction to the solutions procedure of differential equations (used in the thesis) are provided. In the chapters that follow, we apply HAM to a variety of problems to highlight its use and versatility in solving a range of nonlinear problems arising in fluid flow. In chapter 2, a viscous fluid flow problem is considered to illustrate the application of HAM. In chapter 3, we explore the solution of a nonNewtonian fluid flow and provide a proof for the existence of solutions. In addition, chapter 3 sheds light on the versatility and the ease of the application of the Homotopy Analysis Method, and its capability in handling nonlinearity (of rational powers). In chapter 4, we apply HAM to the case in which the fluid is flowing along stretching surfaces by taking into the effects of "slip" and suction or injection at the surface. In chapter 5 we apply HAM to a Magnetohydrodynamic fluid (MHD) flow in two dimensions. Here we allow for the fluid to flow between two plates which are allowed to move together or apart. Also, by considering the effects of suction or injection at the surface, we investigate the effects of changes in the fluid density on the velocity field. Furthermore, the effect of the magnetic field is considered. Chapter 6 deals with MHD fluid flow over a sphere. This problem gave us the first opportunity to apply HAM to a coupled system of nonlinear differential equations. In chapter 7, we study the fluid flow between two infinite stretching disks. Here we solve a fourth order nonlinear ordinary differential equation. In chapter 8, we apply HAM to a nonlinear system of coupled partial differential equations known as the Drinfeld Sokolov equations and bring out the effects of the physical parameters on the traveling wave solutions. Finally, in chapter 9, we present prospects for future work.
Show less

Date Issued

2009

Identifier

CFE0002889, ucf:48017

Format

Document (PDF)

PURL

http://purl.flvc.org/ucf/fd/CFE0002889


Title

SemiAnalytical Solutions of Nonlinear Differential Equations Arising in Science and Engineering.

Creator

Dewasurendra, Mangalagama, Vajravelu, Kuppalapalle, Mohapatra, Ram, Rollins, David, Kumar, Ranganathan, University of Central Florida

Abstract / Description

Systems of coupled nonlinear differential equations arise in science and engineering are inherently nonlinear and difficult to find exact solutions. However, in the late nineties, Liao introduced Optimal Homotopy Analysis Method (OHAM), and it allows us to construct accurate approximations to the systems of coupled nonlinear differential equations.The drawback of OHAM is, we must first choose the proper auxiliary linear operator and then solve the linear higherorder deformation equation by...
Show moreSystems of coupled nonlinear differential equations arise in science and engineering are inherently nonlinear and difficult to find exact solutions. However, in the late nineties, Liao introduced Optimal Homotopy Analysis Method (OHAM), and it allows us to construct accurate approximations to the systems of coupled nonlinear differential equations.The drawback of OHAM is, we must first choose the proper auxiliary linear operator and then solve the linear higherorder deformation equation by spending lots of CPU time. However, in the latest innovation of Liao's " Method of Directly Defining inverse Mapping (MDDiM)" which he introduced to solve a single nonlinear ordinary differential equation has great freedom to define the inverse linear map directly. In this way, one can solve higher order deformation equations quickly, and it is unnecessary to calculate an inverse linear operator.Our primary goal is to extend MDDiM to solve systems of coupled nonlinear ordinary differential equations. In the first chapter, we will introduce MDDiM and briefly discuss the advantages of MDDiM Over OHAM. In the second chapter, we will study a nonlinear coupled system using OHAM. Next three chapters, we will apply MDDiM to coupled nonlinear systems arise in mechanical engineering to study fluid flow and heat transfer. In chapter six we will apply this novel method to study coupled nonlinear systems in epidemiology to investigate how diseases spread throughout time. In the last chapter, we will discuss our conclusions and will propose some future work. Another main focus is to compare MDDiM with OHAM.
Show less

Date Issued

2019

Identifier

CFE0007624, ucf:52551

Format

Document (PDF)

PURL

http://purl.flvc.org/ucf/fd/CFE0007624