Current Search: hydrogen gas (x)
View All Items
- Title
- EXPERIMENTAL ANALYSIS OF THE HYDROGEN SULFIDE ABSORTION PHENOMENA IN BRINE/OIL MIXTURES AS A FUNCTION OF SYSTEM PRESSURE AND H2S CONCENTRATION.
- Creator
-
Zea, Luis, Kumar, Ranganathan, University of Central Florida
- Abstract / Description
-
In underground oil reservoirs, Hydrogen sulfide is usually found coexisting with the oil due to bacteria reduction over a long period of time. The amount of H2S in the oil varies from place to place around the globe. When the oil extraction process begins, the presence of Hydrogen sulfide becomes noticeable as drilling tools, piping and other equipment suffer from sulfide stress cracking, electrochemical corrosion and corrosion fatigue. For this reason, the oil industry invests millions of...
Show moreIn underground oil reservoirs, Hydrogen sulfide is usually found coexisting with the oil due to bacteria reduction over a long period of time. The amount of H2S in the oil varies from place to place around the globe. When the oil extraction process begins, the presence of Hydrogen sulfide becomes noticeable as drilling tools, piping and other equipment suffer from sulfide stress cracking, electrochemical corrosion and corrosion fatigue. For this reason, the oil industry invests millions of dollars per year trying to find better ways to reduce the amount of H2S in oil. An important part of the current investigations deals with brine (sea water)/oil mixtures. The reasons are two-fold: 1) one way of extracting the petroleum from the reservoir is by injecting brine into it and since it has a higher density than oil, the latter will be ejected up to the surface. Taking into account the complex fluid flow occurring within the reservoir it is easy to understand that some brine will also be present as part of the ejected fluid; 2) brine is already present in the reservoir, so independent of the extraction method used, there will be a brine/oil mixture in the ejected flow. When brine and oil have absorbed H2S under pressure in the reservoir and then suffer a decompression during the extraction process, a certain amount of H2S is released from the liquid phase. In order to have a better prediction of how much Hydrogen sulfide can be liberated a good understanding of H2S absorption by these liquids is necessary. The amount of gas a solvent absorbs is a function of pressure, original gas concentration and temperature as described by Henry's Law. The purpose of this thesis is to experimentally analyze how much of the corrosive gas is absorbed into different brine/oil mixtures, and brine and oil, separately. In order to find sufficient data for a thorough analysis, different reservoir simulation scenarios were created. The liquids were mixed from pure brine to pure oil, resulting in 33% and 66% water cuts. Data were obtained at 2 pressures of 20atm and 70atm at room temperature. H2S concentration was also a variable, changing the original gas concentration through different values: 50, 100, and 300ppm. These experiments were conducted in an autoclave system and will better explain the hydrostatic process that occurs inside the reservoir. It was found that throughout all the water cuts, the role that total pressure plays in the absorption phenomena is of less importance as the original H2S concentration is increased. In the same manner it was observed that the highest mass-absorption ratios are always found between 50 and 100ppm and the lowest at 300ppm, this is observed for all water cuts and total pressures. Another important finding was that the ability to absorb the corrosive gas decreases as the original H2S concentration increases and this proves to be true for all water cuts and system pressures. After conducting these different reservoir scenarios, tests were conducted to simulate 300m of the horizontal section of the pipe that connects the head of the well with the platform. This was done with a high pressure 300-meter long loop. It was found that the corrosive gas is absorbed at a higher rate when there is a flow, opposite to a hydrostatic case. Henry's Law constant was identified for each water cut and each pressure, however, the test procedure could not be validated since the gas being studied was not in its pure form. Understanding the absorption phenomena of Hydrogen sulfide in different water cuts will definitely be of great help to the oil industry to make better forecasts of H2S concentrations being ejected from each well.
Show less - Date Issued
- 2008
- Identifier
- CFE0002257, ucf:47824
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002257
- Title
- Surface Acoustic Wave (SAW) Cryogenic Liquid and Hydrogen Gas Sensors.
- Creator
-
Fisher, Brian, Malocha, Donald, Gong, Xun, Likamwa, Patrick, Richie, Samuel, Youngquist, Robert, University of Central Florida
- Abstract / Description
-
This research was born from NASA Kennedy Space Center's (KSC) need for passive, wireless and individually distinguishable cryogenic liquid and H2 gas sensors in various facilities. The risks of catastrophic accidents, associated with the storage and use of cryogenic fluids may be minimized by constant monitoring. Accidents involving the release of H2 gas or LH2 were responsible for 81% of total accidents in the aerospace industry. These problems may be mitigated by the implementation of a...
Show moreThis research was born from NASA Kennedy Space Center's (KSC) need for passive, wireless and individually distinguishable cryogenic liquid and H2 gas sensors in various facilities. The risks of catastrophic accidents, associated with the storage and use of cryogenic fluids may be minimized by constant monitoring. Accidents involving the release of H2 gas or LH2 were responsible for 81% of total accidents in the aerospace industry. These problems may be mitigated by the implementation of a passive (or low-power), wireless, gas detection system, which continuously monitors multiple nodes and reports temperature and H2 gas presence. Passive, wireless, cryogenic liquid level and hydrogen (H2) gas sensors were developed on a platform technology called Orthogonal Frequency Coded (OFC) surface acoustic wave (SAW) radio frequency identification (RFID) tag sensors. The OFC-SAW was shown to be mechanically resistant to failure due to thermal shock from repeated cycles between room to liquid nitrogen temperature. This suggests that these tags are ideal for integration into cryogenic Dewar environments for the purposes of cryogenic liquid level detection. Three OFC-SAW H2 gas sensors were simultaneously wirelessly interrogated while being exposed to various flow rates of H2 gas. Rapid H2 detection was achieved for flow rates as low as 1ccm of a 2% H2, 98% N2 mixture. A novel method and theory to extract the electrical and mechanical properties of a semiconducting and high conductivity thin-film using SAW amplitude and velocity dispersion measurements were also developed. The SAW device was shown to be a useful tool in analysis and characterization of ultrathin and thin films and physical phenomena such as gas adsorption and desorption mechanisms.?
Show less - Date Issued
- 2012
- Identifier
- CFE0004536, ucf:49258
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004536
- Title
- Biological Nutrient Removal (BNR) Process Optimization and Recovery of Embedded Energy Using Biodiesel By-product.
- Creator
-
Salamah, Sultan, Randall, Andrew, Duranceau, Steven, Chopra, Manoj, University of Central Florida
- Abstract / Description
-
Enhanced biological phosphorus removal (EBPR) as well as biological nitrogen removal require a carbon source to be carried out. Volatile fatty acid (VFAs) (mainly acetic and propionic acids) are the major driving force for EBPR. Many domestic wastewaters have an insufficient amount of VFAs. However, carbon sources such as acetic and propionic acids can be produced using primary solids fermentation process. Due to the cost of VFA production, an external carbon source can be added to the...
Show moreEnhanced biological phosphorus removal (EBPR) as well as biological nitrogen removal require a carbon source to be carried out. Volatile fatty acid (VFAs) (mainly acetic and propionic acids) are the major driving force for EBPR. Many domestic wastewaters have an insufficient amount of VFAs. However, carbon sources such as acetic and propionic acids can be produced using primary solids fermentation process. Due to the cost of VFA production, an external carbon source can be added to the biological nutrient removal (BNR) system that can be fermented to provide the desired VFAs. Glycerol (biodiesel by-product) offers a solution to reduce carbon addition cost if can be fermented to acetic and propionic acid or can be used directly as an external carbon substrate for EBPR and denitrification. Using glycerol in wastewater treatment can also offset the biodiesel plant disposal cost and reduce the BNR chemical cost. The main objective of this study was to optimize the prefermentation process and optimize the BNR system using glycerol as an external carbon source. In this work, Optimization of the prefermentation process using glycerol, mixing, and hydrogen gas addition was evaluated. EBPR performance within an A2O-BNR system was evaluated using either a direct glycerol method to the anaerobic zone or by co-fermentation with primary solids. Also, optimization of the nitrogen removal (specifically denitrification) efficiency of a 5-stage BardenphoTM BNR system using either a direct glycerol method to the second anoxic zone or by co-fermentation with primary solids was evaluated. It was found in this study that glycerol was an efficient external carbon substrate for EBPR as well as biological nitrogen removal. The prefermentation experiment showed that glycerol co-fermentation with primary solids produced significantly higher (p(<)0.05) VFAs than primary solids fermentation alone, even more than the possible value from the added glycerol (427 mg-COD/L). The increased VFAs imply that the glycerol addition stimulated additional fermentation of primary solids. Lowering the prefermenter mixing energy (50 to 7 rpm) resulted in a significant increase in VFAs production (80%). Also, purging the headspace of the prefermenter with hydrogen gas did not lead to more VFAs, but significantly (p(<)0.05) increased the propionic acid to acetic acid ratio by 41%. In the A2O-BNR pilot plant experiment, it was found that glycerol is a suitable renewable external substrate to drive enhanced EBPR as well as denitrification. The results from both locations of glycerol addition (direct vs. fermented) were beneficial to the BNR system. Both systems had similar effluent quality and achieved total nitrogen (TN) and total phosphorus (TP) removals up to 86% and 92% respectively. The 5-stage BardenphoTM BNR experiment investigated the location of glycerol addition (direct vs. fermented) on the performance of denitrification in the second anoxic zone and the overall performance. The results from both systems were that glycerol was beneficial to the BNR system and had virtually similar effluent quality. Both systems achieve complete denitrification and excellent removal of TN and TP up to 95% and 89% respectively. Also, the pilot that received fermented glycerol had significantly higher VFAs loading and lower observed yield. The side-stream prefermenter effluent flowing to the second anoxic reactor did not cause high effluent ammonia (NH3) concentration. In summary, the location at which glycerol was added did not affect effluent quality for nitrogen and phosphorus. However, glycerol addition and mixing energy did impact prefermenter performance and effluent quality.
Show less - Date Issued
- 2017
- Identifier
- CFE0006788, ucf:51826
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006788