Current Search: infrared fibers (x)
View All Items
- Title
- Multimaterial fibers in photonics and nanotechnology.
- Creator
-
Tao, Guangming, Abouraddy, Ayman, Li, Guifang, Glebov, Leonid, Peale, Robert, University of Central Florida
- Abstract / Description
-
Recent progress in combing multiple materials with distinct optical, electronic, and thermomechanical properties monolithically in a kilometer-long fiber drawn from a preform offers unique multifunctionality at a low cost. A wide range of unique in-fiber devices have been developed in fiber form-factor using this strategy. Here, I summary my recent results in this nascent field of 'multimaterial fibers'. I will focus on my achievements in producing robust infrared optical fibers and in...
Show moreRecent progress in combing multiple materials with distinct optical, electronic, and thermomechanical properties monolithically in a kilometer-long fiber drawn from a preform offers unique multifunctionality at a low cost. A wide range of unique in-fiber devices have been developed in fiber form-factor using this strategy. Here, I summary my recent results in this nascent field of 'multimaterial fibers'. I will focus on my achievements in producing robust infrared optical fibers and in appropriating optical fiber production technology for applications in nanofabrication.The development of optical components suitable for the infrared (IR) is crucial for applications in this spectral range to reach the maturity level of their counterparts in the visible and near-infrared spectral regimes. A critical class of optical components that has yet to be fully developed is that of IR optical fibers. Here I will present several unique approaches that may result in low-cost, robust IR fibers that transmit light from 1.5 microns to 15 microns drawn from multimaterial preforms. These preforms are prepared exploiting the newly developed procedure of multimaterial coextrusion, which provides unprecedented flexibility in material choices and structure engineering in the extruded preform. I will present several different 'generations' of multimaterial extrusion that enable access to a variety of IR fibers. Examples of the IR fibers realized using this methodology include single mode IR fibers, large index-contrast IR fibers, IR imaging fiber bundles, IR photonic crystal and potentially photonic band-gap fibers.The complex structures produced in multimaterial fibers may also be used in the fabrication of micro- and nano-scale spherical particles by exploiting a recently discovered in-fiber Plateau-Rayleigh capillary instability. Such multimaterial structured particles have promising application in drug delivery, optical sensors, and nanobiotechnology. The benefits accrued from the multimaterial fiber methodology allow for the scalable fabrication of micro- and nano-scale particles having complex internal architectures, such as multi-shell particles, Janus-particles, and particles with combined control over the radial and azimuthal structure.Finally, I will summarize my views on the compatibility of a wide range of amorphous and crystalline materials with the traditional thermal fiber drawing process and with the more recent multimaterial fiber strategy.
Show less - Date Issued
- 2014
- Identifier
- CFE0005555, ucf:50289
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005555
- Title
- 2 micron fiber lasers: power scaling concepts and limitations.
- Creator
-
Sincore, Alex, Richardson, Martin, Amezcua Correa, Rodrigo, Schulzgen, Axel, Shah, Lawrence, University of Central Florida
- Abstract / Description
-
Thulium- and holmium-doped fiber lasers (TDF and HDF) emitting at 2 micron offer unique benefits and applications compared to common ytterbium-doped 1 micron lasers. This dissertation details the concepts, limitations, design, and performance of four 2 micron fiber laser systems. While these lasers were developed for various end-uses, they also provide further insight into two major power scaling limitations. The first limitation is optical nonlinearities: specifically stimulated Brillouin...
Show moreThulium- and holmium-doped fiber lasers (TDF and HDF) emitting at 2 micron offer unique benefits and applications compared to common ytterbium-doped 1 micron lasers. This dissertation details the concepts, limitations, design, and performance of four 2 micron fiber laser systems. While these lasers were developed for various end-uses, they also provide further insight into two major power scaling limitations. The first limitation is optical nonlinearities: specifically stimulated Brillouin scattering (SBS) and modulation instability (MI). The second limitation is thermal failure due to inefficient pump conversion. First, a 21.5 W single-frequency, single-mode laser with adjustable output from continuous-wave to nanosecond pulses is developed. Measuring the SBS threshold versus pulse duration enables the Brillouin gain coefficient and gain bandwidth to be determined at 2 micron. Second, a 23 W spectrally-broadband, nanosecond pulsed laser is constructed for materials processing applications. The temporally incoherent multi-kW peak power pulses can also efficiently produce MI and supercontinuum generation by adjusting the input spectral linewidth. Third, the measured performance of in-band pumped TDF and HDF lasers are compared with simulations. HDF displays low efficiencies, which is explained by including ion clustering in the simulations. The TDF operates with impressive (>)90% slope efficiencies. Based on this result, a system design for (>)1 kW average power TDF amplifier is described. The designed final amplifier will be in-band pumped to enable high efficiency and low thermal load. The amplifier efficiency, operating bandwidth, thermal load, and nonlinear limits are modeled and analyzed to provide a framework for execution. Overall, this dissertation provides further insight and understanding on the various processes that limit power scaling of 2 micron fiber lasers.
Show less - Date Issued
- 2018
- Identifier
- CFE0007374, ucf:52105
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007374
- Title
- Multimaterial Fibers and Tapers A Platform for Nonlinear Photonics and Nanotechnology.
- Creator
-
Shabahang, Soroush, Abouraddy, Ayman, Vanstryland, Eric, Dogariu, Aristide, Belfield, Kevin, University of Central Florida
- Abstract / Description
-
The development of optical sources and components suitable for the mid-infrared is crucial for applications in this spectral range to reach the maturity level of their counterparts in the visible and near-infrared spectral regimes. The recent commercialization of quantum cascade lasers is leading to further interest in this spectral range. Wideband mid-infrared coherent sources, such as supercontinuum generation, have yet to be fully developed. A mid-infrared supercontinuum source would allow...
Show moreThe development of optical sources and components suitable for the mid-infrared is crucial for applications in this spectral range to reach the maturity level of their counterparts in the visible and near-infrared spectral regimes. The recent commercialization of quantum cascade lasers is leading to further interest in this spectral range. Wideband mid-infrared coherent sources, such as supercontinuum generation, have yet to be fully developed. A mid-infrared supercontinuum source would allow for unique applications in spectroscopy and sensing.Over the last decade, it has been shown that high-index confinement in highly nonlinear fibers pumped with high-peak-power pulses is an excellent approach to supercontinuum generation in the visible and near-infrared. Nonlinear waveguides such as fibers offer an obvious advantage in increasing the nonlinear interaction length maintained with a small cross section. In addition, fiber systems do not require optical alignment and are mechanically stable and robust with respect to the environmental changes. These properties have made fiber systems unique in applications where they are implemented in a harsh and unstable environment.In extending this approach into the mid-infrared, I have used chalcogenide glass fibers. Chalcogenide glasses have several attractive features for this application: they have high refractive indices for high optical-confinement, have a wide transparency window in the mid-infrared, and have a few orders-of-magnitude higher nonlinearity than silica glass and other mid-IR glasses. Producing chalcogenide glass fiber tapers offer, furthermore, the possibility of dispersion control and stronger field confinement and hence higher nonlinearity, desired for supercontinuum generation.
Show less - Date Issued
- 2014
- Identifier
- CFE0005252, ucf:50594
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005252
- Title
- Broad Bandwidth, All-fiber, Thulium-doped Photonic Crystal Fiber Amplifier for Potential Use in Scaling Ultrashort Pulse Peak Powers.
- Creator
-
Sincore, Alex, Richardson, Martin, Shah, Lawrence, Amezcua Correa, Rodrigo, University of Central Florida
- Abstract / Description
-
Fiber based ultrashort pulse laser sources are desirable for many applications; however generating high peak powers in fiber lasers is primarily limited by the onset of nonlinear effects such as self-phase modulation, stimulated Raman scattering, and self-focusing. Increasing the fiber core diameter mitigates the onset of these nonlinear effects, but also allows unwanted higher-order transverse spatial modes to propagate. Both large core diameters and single-mode propagation can be...
Show moreFiber based ultrashort pulse laser sources are desirable for many applications; however generating high peak powers in fiber lasers is primarily limited by the onset of nonlinear effects such as self-phase modulation, stimulated Raman scattering, and self-focusing. Increasing the fiber core diameter mitigates the onset of these nonlinear effects, but also allows unwanted higher-order transverse spatial modes to propagate. Both large core diameters and single-mode propagation can be simultaneously attained using photonic crystal fibers.Thulium-doped fiber lasers are attractive for high peak power ultrashort pulse systems. They offer a broad gain bandwidth, capable of amplifying sub-100 femtosecond pulses. The longer center wavelength at 2 ?m theoretically enables higher peak powers relative to 1 ?m systems since nonlinear effects inversely scale with wavelength. Also, the 2 ?m emission is desirable to support applications reaching further into the mid-IR.This work evaluates the performance of a novel all-fiber pump combiner that incorporates a thulium-doped photonic crystal fiber. This fully integrated amplifier is characterized and possesses a large gain bandwidth, essentially single-mode propagation, and high degree of polarization. This innovative all-fiber, thulium-doped photonic crystal fiber amplifier has great potential for enabling high peak powers in 2 ?m fiber systems; however the current optical-to-optical efficiency is low relative to similar free-space amplifiers. Further development and device optimization will lead to higher efficiencies and improved performance.
Show less - Date Issued
- 2014
- Identifier
- CFE0005260, ucf:50611
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005260
- Title
- REFRACTIVE INDICES OF LIQUID CRYSTALS AND THEIR APPLICATIONS IN DISPLAY AND PHOTONIC DEVICES.
- Creator
-
Li, Jun, Wu, Shin-Tson, University of Central Florida
- Abstract / Description
-
Liquid crystals (LCs) are important materials for flat panel display and photonic devices. Most LC devices use electrical field-, magnetic field-, or temperature-induced refractive index change to modulate the incident light. Molecular constituents, wavelength, and temperature are the three primary factors determining the liquid crystal refractive indices: ne and no for the extraordinary and ordinary rays, respectively. In this dissertation, we derive several physical models for describing...
Show moreLiquid crystals (LCs) are important materials for flat panel display and photonic devices. Most LC devices use electrical field-, magnetic field-, or temperature-induced refractive index change to modulate the incident light. Molecular constituents, wavelength, and temperature are the three primary factors determining the liquid crystal refractive indices: ne and no for the extraordinary and ordinary rays, respectively. In this dissertation, we derive several physical models for describing the wavelength and temperature effects on liquid crystal refractive indices, average refractive index, and birefringence. Based on these models, we develop some high temperature gradient refractive index LC mixtures for photonic applications, such as thermal tunable liquid crystal photonic crystal fibers and thermal solitons. Liquid crystal refractive indices decrease as the wavelength increase. Both ne and no saturate in the infrared region. Wavelength effect on LC refractive indices is important for the design of direct-view displays. In Chapter 2, we derive the extended Cauchy models for describing the wavelength effect on liquid crystal refractive indices in the visible and infrared spectral regions based on the three-band model. The three-coefficient Cauchy model could be used for describing the refractive indices of liquid crystals with low, medium, and high birefringence, whereas the two-coefficient Cauchy model is more suitable for low birefringence liquid crystals. The critical value of the birefringence is deltan~0.12. Temperature is another important factor affecting the LC refractive indices. The thermal effect originated from the lamp of projection display would affect the performance of the employed liquid crystal. In Chapter 3, we derive the four-parameter and three-parameter parabolic models for describing the temperature effect on the LC refractive indices based on Vuks model and Haller equation. We validate the empirical Haller equation quantitatively. We also validate that the average refractive index of liquid crystal decreases linearly as the temperature increases. Liquid crystals exhibit a large thermal nonlinearity which is attractive for new photonic applications using photonic crystal fibers. We derive the physical models for describing the temperature gradient of the LC refractive indices, ne and no, based on the four-parameter model. We find that LC exhibits a crossover temperature To at which dno/dT is equal to zero. The physical models of the temperature gradient indicate that ne, the extraordinary refractive index, always decreases as the temperature increases since dne/dT is always negative, whereas no, the ordinary refractive index, decreases as the temperature increases when the temperature is lower than the crossover temperature (dno/dT<0 when the temperature is lower than To) and increases as the temperature increases when the temperature is higher than the crossover temperature (dno/dT>0 when the temperature is higher than To ). Measurements of LC refractive indices play an important role for validating the physical models and the device design. Liquid crystal is anisotropic and the incident linearly polarized light encounters two different refractive indices when the polarization is parallel or perpendicular to the optic axis. The measurement is more complicated than that for an isotropic medium. In Chapter 4, we use a multi-wavelength Abbe refractometer to measure the LC refractive indices in the visible light region. We measured the LC refractive indices at six wavelengths, lamda=450, 486, 546, 589, 633 and 656 nm by changing the filters. We use a circulating constant temperature bath to control the temperature of the sample. The temperature range is from 10 to 55 oC. The refractive index data measured include five low-birefringence liquid crystals, MLC-9200-000, MLC-9200-100, MLC-6608 (delta_epsilon=-4.2), MLC-6241-000, and UCF-280 (delta_epsilon=-4); four middle-birefringence liquid crystals, 5CB, 5PCH, E7, E48 and BL003; four high-birefringence liquid crystals, BL006, BL038, E44 and UCF-35, and two liquid crystals with high dno/dT at room temperature, UCF-1 and UCF-2. The refractive indices of E7 at two infrared wavelengths lamda=1.55 and 10.6 um are measured by the wedged-cell refractometer method. The UV absorption spectra of several liquid crystals, MLC-9200-000, MLC-9200-100, MLC-6608 and TL-216 are measured, too. In section 6.5, we also measure the refractive index of cured optical films of NOA65 and NOA81 using the multi-wavelength Abbe refractometer. In Chapter 5, we use the experimental data measured in Chapter 4 to validate the physical models we derived, the extended three-coefficient and two-coefficient Cauchy models, the four-parameter and three-parameter parabolic models. For the first time, we validate the Vuks model using the experimental data of liquid crystals directly. We also validate the empirical Haller equation for the LC birefringence delta_n and the linear equation for the LC average refractive index. The study of the LC refractive indices explores several new photonic applications for liquid crystals such as high temperature gradient liquid crystals, high thermal tunable liquid crystal photonic crystal fibers, the laser induced 2D+1 thermal solitons in nematic crystals, determination for the infrared refractive indices of liquid crystals, comparative study for refractive index between liquid crystals and photopolymers for polymer dispersed liquid crystal (PDLC) applications, and so on. In Chapter 6, we introduce these applications one by one. First, we formulate two novel liquid crystals, UCF-1 and UCF-2, with high dno/dT at room temperature. The dno/dT of UCF-1 is about 4X higher than that of 5CB at room temperature. Second, we infiltrate UCF-1 into the micro holes around the silica core of a section of three-rod core PCF and set up a highly thermal tunable liquid crystal photonic crystal fiber. The guided mode has an effective area of 440 Ým2 with an insertion loss of less than 0.5dB. The loss is mainly attributed to coupling losses between the index-guided section and the bandgap-guided section. The thermal tuning sensitivity of the spectral position of the bandgap was measured to be 27 nm/degree around room temperature, which is 4.6 times higher than that using the commercial E7 LC mixture operated at a temperature above 50 degree C. Third, the novel liquid crystals UCF-1 and UCF-2 are preferred to trigger the laser-induced thermal solitons in nematic liquid crystal confined in a capillary because of the high positive temperature gradient at room temperature. Fourth, we extrapolate the refractive index data measured at the visible light region to the near and far infrared region basing on the extended Cauchy model and four-parameter model. The extrapolation method is validated by the experimental data measured at the visible light and infrared light regions. Knowing the LC refractive indices at the infrared region is important for some photonic devices operated in this light region. Finally, we make a completely comparative study for refractive index between two photocurable polymers (NOA65 and NOA81) and two series of Merck liquid crystals, E-series (E44, E48, and E7) and BL-series (BL038, BL003 and BL006) in order to optimize the performance of polymer dispersed liquid crystals (PDLC). Among the LC materials we studied, BL038 and E48 are good candidates for making PDLC system incorporating NOA65. The BL038 PDLC cell shows a higher contrast ratio than the E48 cell because BL038 has a better matched ordinary refractive index, higher birefringence, and similar miscibility as compared to E48. Liquid crystals having a good miscibility with polymer, matched ordinary refractive index, and higher birefringence help to improve the PDLC contrast ratio for display applications. In Chapter 7, we give a general summary for the dissertation.
Show less - Date Issued
- 2005
- Identifier
- CFE0000808, ucf:46677
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000808