Current Search: integrated optics (x)
View All Items
- Title
- MONOLITHIC INTEGRATION OF DUAL OPTICAL ELEMENTS ON HIGH POWER SEMICONDUCTOR LASERS.
- Creator
-
vaissie, laurent, Johnson, Eric, University of Central Florida
- Abstract / Description
-
This dissertation investigates the monolithic integration of dual optical elements on high power semiconductor lasers for emission around 980nm wavelength. In the proposed configuration, light is coupled out of the AlGaAs/GaAs waveguide by a low reflectivity grating coupler towards the substrate where a second monolithic optical element is integrated to improve the device performance or functionality. A fabrication process based on electron beam lithography and plasma etching was developed to...
Show moreThis dissertation investigates the monolithic integration of dual optical elements on high power semiconductor lasers for emission around 980nm wavelength. In the proposed configuration, light is coupled out of the AlGaAs/GaAs waveguide by a low reflectivity grating coupler towards the substrate where a second monolithic optical element is integrated to improve the device performance or functionality. A fabrication process based on electron beam lithography and plasma etching was developed to control the grating coupler duty cycle and shape. The near-field intensity profile outcoupled by the grating is modeled using a combination of finite-difference time domain (FDTD) analysis of the nonuniform grating and a self-consistent model of the broad area active region. Improvement of the near-field intensity profile in good agreement with the FDTD model is demonstrated by varying the duty cycle from 20% to 55% and including the aspect ratio dependent etching (ARDE) for sub-micron features. The grating diffraction efficiency is estimated to be higher than 95% using a detailed analysis of the losses mechanisms of the device. The grating reflectivity is estimated to be as low as 2.10-4. The low reflectivity of the light extraction process is shown to increase the device efficiency and efficiently suppress lasing oscillations if both cleaved facets are replaced by grating couplers to produce 1.5W QCW with 11nm bandwidth into a single spot a few mm above the device. Peak power in excess of 30W without visible COMD is achieved in this case. Having optimized, the light extraction process, we demonstrate the integration of three different optical functions on the substrate of the surface-emitting laser. First, a 40 level refractive microlens milled using focused ion beam shows a twofold reduction of the full-width half maximum 1mm above the device, showing potential for monolithic integration of coupling optics on the wafer. We then show that differential quantum efficiency of 65%, the highest reported for a grating-coupled device, can be achieved by lowering the substrate reflectivity using a 200nm period tapered subwavelength grating that has a grating wavevector oriented parallel to the electric field polarization. The low reflectivity structure shows trapezoidal sidewall profiles obtained using a soft mask erosion technique in a single etching step. Finally, we demonstrate that, unlike typical methods reported so far for in-plane beam-shaping of laser diodes, the integration of a beam-splitting element on the device substrate does not affect the device efficiency. The proposed device configuration can be tailored to satisfy a wide range of applications including high power pump lasers, superluminescent diodes, or optical amplifiers applications.
Show less - Date Issued
- 2004
- Identifier
- CFE0000223, ucf:46253
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000223
- Title
- Monolithically Integrated InP-based Unidirectional Circulators Utilizing non-Hermiticity and Nonlinearity.
- Creator
-
Aleahmad, Parinaz, Christodoulides, Demetrios, Delfyett, Peter, Likamwa, Patrick, Moya Cessa, Hector Manual, University of Central Florida
- Abstract / Description
-
The need to integrate critical optical components on a single chip has been an ongoing quest in both optoelectronics and optical communication systems. Among the possible devices, elements supporting non-reciprocal transmission are of great interest for applications where signal routing and isolation is required. In this respect, breaking reciprocity is typically accomplished via Faraday rotation through appropriate magneto-optical arrangements. Unfortunately, standard light emitting...
Show moreThe need to integrate critical optical components on a single chip has been an ongoing quest in both optoelectronics and optical communication systems. Among the possible devices, elements supporting non-reciprocal transmission are of great interest for applications where signal routing and isolation is required. In this respect, breaking reciprocity is typically accomplished via Faraday rotation through appropriate magneto-optical arrangements. Unfortunately, standard light emitting optoelectronic materials like for example III-V semiconductors, lack magneto-optical properties and hence cannot be directly used in this capacity. To address these issues, a number of different tactics have been attempted in the last few years. These range from directly bonding garnets on chip, to parametric structures and unidirectional nonlinear arrangements involving ring resonators, to mention a few. Clearly, of importance will be to realize families of non-reciprocal devises that not only can be miniaturized and readily integrated on chip but they also rely on physical processes that are indigenous to the semiconductor wafer itself. Quite recently we have theoretically shown that such unidirectional systems can be implemented, provided one simultaneously exploits the presence of gain/loss processes and optical nonlinearities. In principle, these all-dielectric structures can be broadband, polarization insensitive, color-preserving, and can display appreciable isolation ratios provided they are used under pulsed conditions. In this study, we experimentally demonstrate a compact, monolithically integrated unidirectional 4(&)#215;4 optical circulator, based on non-reciprocal optical transmission through successive amplification/attenuation stages and elements with very large resonance nonlinearities associated with InGaAsP quantum wells. Our results indicate that isolation ratios over 20dB can be experimentally achieved in pulse-mode operation. Our design can be effortlessly extended to other existing optoelectronic device systems beyond InP.
Show less - Date Issued
- 2016
- Identifier
- CFE0006522, ucf:51373
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006522
- Title
- Nonlinear integrated photonics on silicon and gallium arsenide substrates.
- Creator
-
Ma, Jichi, Fathpour, Sasan, Hagan, David, Li, Guifang, Peale, Robert, University of Central Florida
- Abstract / Description
-
Silicon photonics is nowadays a mature technology and is on the verge of becoming a blossoming industry. Silicon photonics has also been pursued as a platform for integrated nonlinear optics based on Raman and Kerr effects. In recent years, more futuristic directions have been pursued by various groups. For instance, the realm of silicon photonics has been expanded beyond the well-established near-infrared wavelengths and into the mid-infrared (3 (-) 5 (&)#181;m). In this wavelength range,...
Show moreSilicon photonics is nowadays a mature technology and is on the verge of becoming a blossoming industry. Silicon photonics has also been pursued as a platform for integrated nonlinear optics based on Raman and Kerr effects. In recent years, more futuristic directions have been pursued by various groups. For instance, the realm of silicon photonics has been expanded beyond the well-established near-infrared wavelengths and into the mid-infrared (3 (-) 5 (&)#181;m). In this wavelength range, the omnipresent hurdle of nonlinear silicon photonics in the telecommunication band, i.e., nonlinear losses due to two-photon absorption, is inherently nonexistent. With the lack of efficient light-emission capability and second-order optical nonlinearity in silicon, heterogeneous integration with other material systems has been another direction pursued. Finally, several approaches have been proposed and demonstrated to address the energy efficiency of silicon photonic devices in the near-infrared wavelength range. In this dissertation, theoretical and experimental works are conducted to extend applications of integrated photonics into mid-infrared wavelengths based on silicon, demonstrate heterogeneous integration of tantalum pentoxide and lithium niobate photonics on silicon substrates, and study two-photon photovoltaic effect in gallium arsenide and plasmonic-enhanced structures.Specifically, performance and noise properties of nonlinear silicon photonic devices, such as Raman lasers and optical parametric amplifiers, based on novel and reliable waveguide technologies are studied. Both near-infrared and mid-infrared nonlinear silicon devices have been studied for comparison. Novel tantalum-pentoxide- and lithium-niobate-on-silicon platforms are developed for compact microring resonators and Mach-Zehnder modulators. Third- and second-harmonic generations are theoretical studied based on these two platforms, respectively. Also, the two-photon photovoltaic effect is studied in gallium arsenide waveguides for the first time. The effect, which was first demonstrated in silicon, is the nonlinear equivalent of the photovoltaic effect of solar cells and offers a viable solution for achieving energy-efficient photonic devices. The measured power efficiency achieved in gallium arsenide is higher than that in silicon and even higher efficiency is theoretically predicted with optimized designs. Finally, plasmonic-enhanced photovoltaic power converters, based on the two-photon photovoltaic effect in silicon using subwavelength apertures in metallic films, are proposed and theoretically studied.
Show less - Date Issued
- 2014
- Identifier
- CFE0005373, ucf:50441
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005373
- Title
- Thin-film Lithium Niobate Photonics for Electro-optics, Nonlinear Optics, and Quantum Optics on Silicon.
- Creator
-
Rao, Ashutosh, Fathpour, Sasan, Delfyett, Peter, Li, Guifang, Thomas, Jayan, University of Central Florida
- Abstract / Description
-
Ion-sliced thin-film lithium niobate (LN) compact waveguide technology has facilitated the resurgence of integrated photonics based on lithium niobate. These thin-film LN waveguides offer over an order of magnitude improvement in optical confinement, and about two orders of magnitude reduction in waveguide bending radius, compared to conventional LN waveguides. Harnessing the improved confinement, a variety of miniaturized and efficient photonic devices are demonstrated in this work. First,...
Show moreIon-sliced thin-film lithium niobate (LN) compact waveguide technology has facilitated the resurgence of integrated photonics based on lithium niobate. These thin-film LN waveguides offer over an order of magnitude improvement in optical confinement, and about two orders of magnitude reduction in waveguide bending radius, compared to conventional LN waveguides. Harnessing the improved confinement, a variety of miniaturized and efficient photonic devices are demonstrated in this work. First, two types of compact electrooptic modulators are presented (-) microring modulators, and Mach-Zehnder modulators. Next, two distinct approaches to nonlinear optical frequency converters are implemented (-) periodically poled lithium niobate, and mode shape modulation (grating assisted quasi-phase matching). Following this, stochastic variations are added to the mode shape modulation approach to demonstrate random quasi-phase matching. Afterward, broadband photon-pair generation is demonstrated in the miniaturized periodically poled lithium niobate, and spectral correlations of the biphoton spectrum are reported. Finally, extensions of the aforementioned results suitable for future work are discussed.
Show less - Date Issued
- 2018
- Identifier
- CFE0007085, ucf:52013
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007085
- Title
- INTEGRATED OPTICAL SPR (SURFACE PLASMON RESONANCE) SENSOR BASED ON OPTOELECTRONIC PLATFORM.
- Creator
-
Bang, Hyungseok, LiKamWa, Patrick, University of Central Florida
- Abstract / Description
-
Current major demands in SPR sensor development are system miniaturization and throughput improvement. Structuring an array of integrated optical SPR sensor heads on a semiconductor based optoelectronic platform could be a promising solution for those issues, since integrated optical waveguides have highly miniaturized dimension and the optoelectronic platform enables on-chip optical-to-electrical signal conversion. Utilizing a semiconductor based platform to achieve optoelectronic...
Show moreCurrent major demands in SPR sensor development are system miniaturization and throughput improvement. Structuring an array of integrated optical SPR sensor heads on a semiconductor based optoelectronic platform could be a promising solution for those issues, since integrated optical waveguides have highly miniaturized dimension and the optoelectronic platform enables on-chip optical-to-electrical signal conversion. Utilizing a semiconductor based platform to achieve optoelectronic functionality poses requirements to the senor head; the sensor head needs to have reasonably small size while it should have reasonable sensitivity and fabrication tolerance. This research proposes a novel type of SPR sensor head and demonstrates a fabricated device with an array of integrated optical SPR sensor heads endowed with optoelectronic functionality. The novel integrated optical SPR sensor head relies on mode conversion efficiency for its operational principle. The beauty of this type of sensor head is it can produce clear contrast in SPR spectrum with a highly miniaturized and simple structure, in contrast to several-millimeter-scale conventional absorption type or interferometer type sensor heads. The integrated optical SPR sensor with optoelectronic functionality has been realized by structuring a dielectric waveguide based SPR sensor head on a photodetector-integrated semiconductor substrate. A large number of unit sensors have been fabricated on a substrate with a batch fabrication process, which promises a high throughput SPR sensor system or low-priced disposable sensors.
Show less - Date Issued
- 2008
- Identifier
- CFE0002312, ucf:47841
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002312
- Title
- Wavelength scale resonant structures for integrated photonic applications.
- Creator
-
Weed, Matthew, Schoenfeld, Winston, Moharam, M., Likamwa, Patrick, Delfyett, Peter, Leuenberger, Michael, University of Central Florida
- Abstract / Description
-
An approach to integrated frequency-comb filtering is presented, building from a background in photonic crystal cavity design and fabrication. Previous work in the development of quantum information processing devices through integrated photonic crystals consists of photonic band gap engineering and methods of on-chip photon transfer. This work leads directly to research into coupled-resonator optical waveguides which stands as a basis for the primary line of investigation. These coupled...
Show moreAn approach to integrated frequency-comb filtering is presented, building from a background in photonic crystal cavity design and fabrication. Previous work in the development of quantum information processing devices through integrated photonic crystals consists of photonic band gap engineering and methods of on-chip photon transfer. This work leads directly to research into coupled-resonator optical waveguides which stands as a basis for the primary line of investigation. These coupled cavity systems offer the designer slow light propagation which increases photon lifetime, reduces size limitations toward on-chip integration, and offers enhanced light-matter interaction. A unique resonant structure explained by various numerical models enables comb-like resonant clusters in systems that otherwise have no such regular resonant landscape (e.g. photonic crystal cavities). Through design, simulation, fabrication and test, the work presented here is a thorough validation for the future potential of coupled-resonator filters in frequency comb laser sources.
Show less - Date Issued
- 2013
- Identifier
- CFE0004957, ucf:49568
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004957
- Title
- Non-Reciprocal Wave Transmission in Integrated Waveguide Array Isolators.
- Creator
-
Ho, Yat, Likamwa, Patrick, Christodoulides, Demetrios, Vanstryland, Eric, Kaup, David, University of Central Florida
- Abstract / Description
-
Non-reciprocal wave transmission is a phenomenon witnessed in certain photonic devices when the wave propagation dynamics through the device along one direction differs greatly from the dynamics along the counter-propagating direction. Specifically, it refers to significant power transfer occurring in one direction, and greatly reduced power transfer in the opposite direction. The resulting effect is to isolate the directionality of wave propagation, allowing transmission to occur along one...
Show moreNon-reciprocal wave transmission is a phenomenon witnessed in certain photonic devices when the wave propagation dynamics through the device along one direction differs greatly from the dynamics along the counter-propagating direction. Specifically, it refers to significant power transfer occurring in one direction, and greatly reduced power transfer in the opposite direction. The resulting effect is to isolate the directionality of wave propagation, allowing transmission to occur along one direction only.Given the popularity of photonic integrated circuits (PIC), in which all the optical components are fabricated on the same chip so that the entire optical system can be made more compact, it is desirable to have an easily integrated optical isolator. Common free-space optical isolator designs, which rely on the Faraday effect, are limited by the availability of suitable magnetic materials. This research proposes a novel integrated optical isolator based on an array of closely spaced, identical waveguides. Because of the nonlinear optical properties of the material, this device exploits the differing behaviors of such an array when illuminated with either a high power or a low power beam to achieve non-reciprocal wave transmission in the forwards and backwards directions, respectively. The switching can be controlled electro-optically via an integrated gain section which provides optical amplification before the input to the array. The design, fabrication, characterization and testing of this optical isolator are covered in this dissertation. We study the switching dynamics of this device and present its optimum operating conditions. ?
Show less - Date Issued
- 2012
- Identifier
- CFE0004305, ucf:49495
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004305
- Title
- Hybrid Integrated Photonic Platforms and Devices.
- Creator
-
Chiles, Jeffrey, Fathpour, Sasan, Vodopyanov, Konstantin, Khajavikhan, Mercedeh, Chanda, Debashis, University of Central Florida
- Abstract / Description
-
Integrated photonics has the potential to revolutionize optical systems by achieving drastic reductions in their size, weight and power. Remote spectroscopy, free-space communications and high-speed telecommunications are critical applications that would benefit directly from these advancements. However, many such applications require extremely wide spectral bandwidths, leading to significant challenges in their integration. The choice of integrated platform influences the optical...
Show moreIntegrated photonics has the potential to revolutionize optical systems by achieving drastic reductions in their size, weight and power. Remote spectroscopy, free-space communications and high-speed telecommunications are critical applications that would benefit directly from these advancements. However, many such applications require extremely wide spectral bandwidths, leading to significant challenges in their integration. The choice of integrated platform influences the optical transparency and functionality which can be ultimately achieved. In this work, several new platforms and technologies have been developed to meet these needs. First, the silicon-on-lithium-niobate (SiLN) platform is discussed, on which the first compact, integrated electro-optic modulator in the mid-infrared has been demonstrated. Next, results are shown in the development of the all-silicon-optical-platform (ASOP), an ultra-stable suspended membrane approach which offers broad optical transparency from 1.2 to 8.5 um and enables efficient nonlinear frequency conversion in the mid-IR. This fabrication approach is then taken further with (")anchored-membrane waveguides,(") (T-Guides) enabling single-mode and single-polarization waveguiding over a span exceeding 1.27 octaves. Afterward, a new photonic technology enabling integrated polarization beam-splitters and polarizers over unprecedented bandwidths is introduced, called topographically anisotropic photonics (TAP). Next, results on high-performance microphotonic chalcogenide glass waveguides are presented. Finally, several integrated photonics concepts suitable for further work will be discussed, such as augmentations to T-Guides and a novel technique for quasi-phase-matching.
Show less - Date Issued
- 2016
- Identifier
- CFE0006447, ucf:51408
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006447
- Title
- ELECTRO-OPTICAL AND ALL-OPTICAL SWITCHING IN MULTIMODE INTERFERENCE WAVEGUIDES INCORPORATING SEMICONDUCTOR NANOSTRUCTURES.
- Creator
-
Bickel, Nathan, LiKamWa, Patrick, University of Central Florida
- Abstract / Description
-
The application of epitaxially grown, III-V semiconductor-based nanostructures to the development of electro-optical and all-optical switches is investigated through the fabrication and testing of integrated photonic devices designed using multimode interference (MMI) waveguides. The properties and limitations of the materials are explored with respect to the operation of those devices through electrical carrier injection and optical pumping. MMI waveguide geometry was employed as it offered...
Show moreThe application of epitaxially grown, III-V semiconductor-based nanostructures to the development of electro-optical and all-optical switches is investigated through the fabrication and testing of integrated photonic devices designed using multimode interference (MMI) waveguides. The properties and limitations of the materials are explored with respect to the operation of those devices through electrical carrier injection and optical pumping. MMI waveguide geometry was employed as it offered advantages such as a very compact device footprint, low polarization sensitivity, large bandwidth and relaxed fabrication tolerances when compared with conventional single-mode waveguide formats. The first portion of this dissertation focuses on the characterization of the materials and material processing techniques for the monolithic integration of In0.15Ga0.85As/GaAs self-assembled quantum dots (SAQD) and InGaAsP/InGaAsP multiple quantum wells (MQW). Supplemental methods for post-growth bandgap tuning and waveguide formation were developed, including a plasma treatment process which is demonstrated to reliably inhibit thermally induced interdiffusion of Ga and In atoms in In0.15Ga0.85As/GaAs quantum dots. The process is comparable to the existing approach of capping the SAQD wafer with TiO2, while being simpler to implement along-side companion techniques such as impurity free vacancy disordering. Study of plasma-surface interactions in both wafer structures suggests that the effect may be dependent on the composition of the contact layer. The second portion of this work deals with the design, fabrication, and the testing of MMI switches which are used to investigate the limits of electrical current control when employing SAQD as the active core material. A variable power splitter based on a 3-dB MMI coupler is used to analyze the effects of sub-microsecond electrical current pulses in relation to carrier and thermal nonlinearities. Electrical current controlled switching of the variable power splitter and a tunable 2 x 2 MMI coupler is also demonstrated. The third part of this dissertation explores the response of In0.15Ga0.85As/GaAs SAQD waveguide structures to photogenerated carriers. Also presented is a simple, but effective, design modification to the 2 x 2 MMI cross-coupler switch that allows control over the carrier distribution within the MMI waveguide. This technique is combined with selective-area bandgap tuning to demonstrate a compact, working, all-optical MMI based switch.
Show less - Date Issued
- 2010
- Identifier
- CFE0003220, ucf:48568
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003220
- Title
- Third-order optical nonlinearities for integrated microwave photonics applications.
- Creator
-
Malinowski, Marcin, Fathpour, Sasan, Delfyett, Peter, Christodoulides, Demetrios, Lyakh, Arkadiy, University of Central Florida
- Abstract / Description
-
The field of integrated photonics aims at compressing large and environmentally-sensitive opticalsystems to micron-sized circuits that can be mass-produced through existing semiconductor fabri-cation facilities. The integration of optical components on single chips is pivotal to the realizationof miniature systems with high degree of complexity. Such novel photonic chips find abundant ap-plications in optical communication, spectroscopy and signal processing. This work concentrateson...
Show moreThe field of integrated photonics aims at compressing large and environmentally-sensitive opticalsystems to micron-sized circuits that can be mass-produced through existing semiconductor fabri-cation facilities. The integration of optical components on single chips is pivotal to the realizationof miniature systems with high degree of complexity. Such novel photonic chips find abundant ap-plications in optical communication, spectroscopy and signal processing. This work concentrateson harnessing nonlinear phenomena to this avail.The first part of this dissertation discusses, both from component and system level, the developmentof a frequency comb source with a semiconductor mode-locked laser at its heart. New nonlinear de-vices for supercontinuum and second-harmonic generations are developed and their performance isassessed inside the system. Theoretical analysis of a hybrid approach with synchronously-pumpedKerr cavity is also provided. The second part of the dissertation investigates stimulated Brillouinscattering (SBS) in integrated photonics. A fully-tensorial open-source numerical tool is developedto study SBS in optical waveguides composed of crystalline materials, particularly silicon. SBS isdemonstrated in an all-silicon optical platform.
Show less - Date Issued
- 2019
- Identifier
- CFE0007674, ucf:52497
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007674
- Title
- Hybrid integration of second- and third-order highly nonlinear waveguides on silicon substrates.
- Creator
-
Camacho Gonzalez, Guillermo Fernando, Fathpour, Sasan, Likamwa, Patrick, Amezcua Correa, Rodrigo, Peale, Robert, University of Central Florida
- Abstract / Description
-
In order to extend the capabilities and applications of silicon photonics, other materials and compatible technologies have been developed and integrated on silicon substrates. A particular class of integrable materials are those with high second- and third-order nonlinear optical properties. This work presents contributions made to nonlinear integrated photonics on silicon substrates, including chalcogenide waveguides for over an octave supercontinuum generation, and rib-loaded thin-film...
Show moreIn order to extend the capabilities and applications of silicon photonics, other materials and compatible technologies have been developed and integrated on silicon substrates. A particular class of integrable materials are those with high second- and third-order nonlinear optical properties. This work presents contributions made to nonlinear integrated photonics on silicon substrates, including chalcogenide waveguides for over an octave supercontinuum generation, and rib-loaded thin-film lithium niobate waveguides for highly efficient second-harmonic generation. Through the pursuit of hybrid integration of the two types of waveguides for applications such as on-chip self-referenced optical frequency combs, we have experimentally demonstrated fabrication integrability of chalcogenide and thin-film lithium niobate waveguides in a single chip and a pathway for both second- and third-order nonlinearities occurring therein. Accordingly, design specifications for an efficient nonlinear integrated waveguide are reported, showing over an octave supercontinuum generation and frequency selectivity for second-harmonic generation, enabling potentials of on-chip interferometry techniques for carrier-envelope offset detection, and hence stabilized optical combs.
Show less - Date Issued
- 2019
- Identifier
- CFE0007607, ucf:52560
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007607
- Title
- Silicon photonic devices for optical delay lines and mid infrared applications.
- Creator
-
Khan, Saeed, Fathpour, Sasan, Likamwa, Patrick, Gong, Xun, Delfyett, Peter, Schoenfeld, Winston, University of Central Florida
- Abstract / Description
-
Silicon photonics has been a rapidly growing subfield of integrated optics and optoelectronic in the last decade and is currently considered a mature technology. The main thrust behind the growth is its compatibility with the mature and low-cost microelectronic integrated circuits fabrication process. In recent years, several active and passive photonic devices and circuits have been demonstrated on silicon. Optical delay lines are among important silicon photonic devices, which are essential...
Show moreSilicon photonics has been a rapidly growing subfield of integrated optics and optoelectronic in the last decade and is currently considered a mature technology. The main thrust behind the growth is its compatibility with the mature and low-cost microelectronic integrated circuits fabrication process. In recent years, several active and passive photonic devices and circuits have been demonstrated on silicon. Optical delay lines are among important silicon photonic devices, which are essential for a variety of photonic system applications including optical beam-forming for controlling phased-array antennas, optical communication and networking systems and optical coherence tomography. In this thesis, several types of delay lines based on apodized grating waveguides are proposed and demonstrated. Simulation and experimental results suggest that these novel devices can provide high optical delay and tunability at very high bit rate. While most of silicon photonics research has focused in the near-infrared wavelengths, extending the operating wavelength range of the technology into in the 3(-)5 (&)#181;m, or the mid-wave infrared regime, is a more recent field of research. A key challenge has been that the standard silicon-on-insulator waveguides are not suitable for the mid-infrared, since the material loss of the buried oxide layer becomes substantially high. Here, the silicon-on-sapphire waveguide technology, which can extend silicon's operating wavelength range up to 4.4 (&)#181;m, is investigated. Furthermore, silicon-on-nitride waveguides, boasting a wide transparent range of 1.2(-)6.7 ?m, are demonstrated and characterized for the first time at both mid-infrared (3.39 ?m) and near-infrared (1.55 ?m) wavelengths.
Show less - Date Issued
- 2013
- Identifier
- CFE0005014, ucf:49996
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005014
- Title
- INTEGRATED INP PHOTONIC SWITCHES.
- Creator
-
May-Arrioja, Daniel, LiKamWa, Patrick, University of Central Florida
- Abstract / Description
-
Photonic switches are becoming key components in advanced optical networks because of the large variety of applications that they can perform. One of the key advantages of photonic switches is that they redirect or convert light without having to make any optical to electronic conversions and vice versa, thus allowing networking functions to be lowered into the optical layer. InP-based switches are particularly attractive because of their small size, low electrical power consumption, and...
Show morePhotonic switches are becoming key components in advanced optical networks because of the large variety of applications that they can perform. One of the key advantages of photonic switches is that they redirect or convert light without having to make any optical to electronic conversions and vice versa, thus allowing networking functions to be lowered into the optical layer. InP-based switches are particularly attractive because of their small size, low electrical power consumption, and compatibility with integration of laser sources, photo-detectors, and electronic components. In this dissertation the development of integrated InP photonic switches using an area-selective zinc diffusion process has been investigated. The zinc diffusion process is implemented using a semi-sealed open-tube diffusion technique. The process has proven to be highly controllable and reproducible by carefully monitoring of the diffusion parameters. Using this technique, isolated p-n junctions exhibiting good I-V characteristics and breakdown voltages greater than 10 V can be selectively defined across a semiconductor wafer. A series of Mach-Zehnder interferometric (MZI) switches/modulators have been designed and fabricated. Monolithic integration of 1x2 and 2x2 MZI switches has been demonstrated. The diffusion process circumvents the need for isolation trenches, and hence optical losses can be significantly reduced. An efficient optical beam steering device based on InGaAsP multiple quantum wells is also demonstrated. The degree of lateral current spreading is easily regulated by controlling the zinc depth, allowing optimization of the injected currents. Beam steering over a 21 microns lateral distance with electrical current values as low as 12.5 mA are demonstrated. Using this principle, a reconfigurable 1x3 switch has been implemented with crosstalk levels better than -17 dB over a 50 nm wavelength range. At these low electrical current levels, uncooled and d.c. bias operation is made feasible. The use of multimode interference (MMI) structures as active devices have also been investigated. These devices operate by selective refractive index perturbation on very specific areas within the MMI structure, and this is again realized using zinc diffusion. Several variants such as a compact MMI modulator that is as short as 350 µm, a robust 2x2 photonic switch and a tunable MMI coupler have been demonstrated.
Show less - Date Issued
- 2006
- Identifier
- CFE0001368, ucf:47007
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001368