Current Search: interior problem of tomography  finite Hilbert transform  TitchmarshWeyl theory  diagonalization  large parameter asymptotics  RiemannHilbert problem  nonlinear steepest descent (x)


Title

Spectral properties of the finite Hilbert transform on two adjacent intervals via the method of RiemannHilbert problem.

Creator

Blackstone, Elliot, Tovbis, Alexander, Katsevich, Alexander, Tamasan, Alexandru, Pang, Sean, University of Central Florida

Abstract / Description

In this dissertation, we study a selfadjoint integral operator $\hat{K}$ which is defined in terms of finite Hilbert transforms on two adjacent intervals. These types of transforms arise when one studies the interior problem of tomography. The operator $\hat{K}$ possesses a socalled ``integrable kernel'' and it is known that the spectral properties of $\hat{K}$ are intimately related to a $2\times2$ matrix function $\Gamma(z;\lambda)$ which is the solution to a particular RiemannHilbert...
Show moreIn this dissertation, we study a selfadjoint integral operator $\hat{K}$ which is defined in terms of finite Hilbert transforms on two adjacent intervals. These types of transforms arise when one studies the interior problem of tomography. The operator $\hat{K}$ possesses a socalled ``integrable kernel'' and it is known that the spectral properties of $\hat{K}$ are intimately related to a $2\times2$ matrix function $\Gamma(z;\lambda)$ which is the solution to a particular RiemannHilbert problem (in the $z$ plane). We express $\Gamma(z;\lambda)$ explicitly in terms of hypergeometric functions and find the small $\lambda$ asymptotics of $\Gamma(z;\lambda)$. This asymptotic analysis is necessary for the spectral analysis of the finite Hilbert transform on multiple adjacent intervals. We show that $\Gamma(z;\lambda)$ also has a jump in the $\lambda$ plane which allows us to compute the jump of the resolvent of $\hat{K}$. This jump is an important step in showing that the finite Hilbert transforms has simple and purely absolutely continuous spectrum. The well known spectral theory now allows us to construct unitary operators which diagonalize the finite Hilbert transforms. Lastly, we mention some future directions which include the many interval scenario and a bispectral property of $\hat{K}$.
Show less

Date Issued

2019

Identifier

CFE0007602, ucf:52527

Format

Document (PDF)

PURL

http://purl.flvc.org/ucf/fd/CFE0007602