Current Search: inverse algorithm (x)
View All Items
 Title
 AN INVERSE ALGORITHM TO ESTIMATE THERMAL CONTACT RESISTANCE.
 Creator

Gill, Jennifer, Kassab, Alain, University of Central Florida
 Abstract / Description

Thermal systems often feature composite regions that are mechanically mated. In general, there exists a significant temperature drop across the interface between such regions which may be composed of similar or different materials. The parameter characterizing this temperature drop is the thermal contact resistance, which is defined as the ratio of the temperature drop to the heat flux normal to the interface. The thermal contact resistance is due to roughness effects between mating surfaces...
Show moreThermal systems often feature composite regions that are mechanically mated. In general, there exists a significant temperature drop across the interface between such regions which may be composed of similar or different materials. The parameter characterizing this temperature drop is the thermal contact resistance, which is defined as the ratio of the temperature drop to the heat flux normal to the interface. The thermal contact resistance is due to roughness effects between mating surfaces which cause certain regions of the mating surfaces to loose contact thereby creating gaps. In these gap regions, the principal modes of heat transfer are conduction across the contacting regions of the interface, conduction or natural convection in the fluid filling the gap regions of the interface, and radiation across the gap surfaces. Moreover, the contact resistance is a function of contact pressure as this can significantly alter the topology of the contact region. The thermal contact resistance is a phenomenologically complex function and can significantly alter prediction of thermal models of complex multicomponent structures. Accurate estimates of thermal contact resistances are important in engineering calculations and find application in thermal analysis ranging from relatively simple layered and composite materials to more complex biomaterials. There have been many studies devoted to the theoretical predictions of thermal contact resistance and although general theories have been somewhat successful in predicting thermal contact resistances, most reliable results have been obtained experimentally. This is due to the fact that the nature of thermal contact resistance is quite complex and depends on many parameters including types of mating materials, surface characteristics of the interfacial region such as roughness and hardness, and contact pressure distribution. In experiments, temperatures are measured at a certain number of locations, usually close to the contact surface, and these measurements are used as inputs to a parameter estimation procedure to arrive at the soughtafter thermal contact resistance. Most studies seek a single value for the contact resistance, while the resistance may in fact also vary spatially. In this thesis, an inverse problem (IP) is formulated to estimate the spatial variation of the thermal contact resistance along an interface in a twodimensional configuration. Temperatures measured at discrete locations using embedded sensors appropriately placed in proximity to the interface provide the additional information required to solve the inverse problem. A superposition method serves to determine sensitivity coefficients and provides guidance in the location of the measuring points. Temperature measurements are then used to define a regularized quadratic functional that is minimized to yield the contact resistance between the two mating surfaces. A boundary element method analysis (BEM) provides the temperature field under current estimates of the contact resistance in the solution of the inverse problem when the geometry of interest is not regular, while an analytical solution can be used for regular geometries. Minimization of the IP functional is carried out by the LevenbergMarquadt method or by a Genetic Algorithm depending on the problem under consideration. The Lcurve method of Hansen is used to choose the optimal regularization parameter. A series of numerical examples are provided to demonstrate and validate the approach.
Show less  Date Issued
 2005
 Identifier
 CFE0000748, ucf:46582
 Format
 Document (PDF)
 PURL
 http://purl.flvc.org/ucf/fd/CFE0000748
 Title
 INVERSE BOUNDARY ELEMENT/GENETIC ALGORITHM METHOD FOR RECONSTRUCTION OF MULTIDIMENSIONAL HEAT FLUX DISTRIBUTIONS WITH FILM COOLING APPLICATIONS.
 Creator

Silieti, Mahmood, Kassab, Alain, University of Central Florida
 Abstract / Description

A methodology is formulated for the solution of the inverse problem concerned with the reconstruction of multidimensional heat fluxes for film cooling applications. The motivation for this study is the characterization of complex thermal conditions in industrial applications such as those encountered in film cooled turbomachinery components. The heat conduction problem in the metal endwall/shroud is solved using the boundary element method (bem), and the inverse problem is solved using a...
Show moreA methodology is formulated for the solution of the inverse problem concerned with the reconstruction of multidimensional heat fluxes for film cooling applications. The motivation for this study is the characterization of complex thermal conditions in industrial applications such as those encountered in film cooled turbomachinery components. The heat conduction problem in the metal endwall/shroud is solved using the boundary element method (bem), and the inverse problem is solved using a genetic algorithm (ga). Thermal conditions are overspecified at exposed surfaces amenable to measurement, while the temperature and surface heat flux distributions are unknown at the film cooling hole/slot walls. The latter are determined in an iterative process by developing two approaches. The first approach, developed for 2d applications, solves an inverse problem whose objective is to adjust the film cooling hole/slot wall temperatures and heat fluxes until the temperature and heat flux at the measurement surfaces are matched in an overall heat conduction solution. The second approach, developed for 2d and 3d applications, is to distribute a set of singularities (sinks) at the vicinity of the cooling slots/holes surface inside a fictitious extension of the physical domain or along cooling hole centerline with a given initial strength distribution. The inverse problem iteratively alters the strength distribution of the singularities (sinks) until the measuring surfaces heat fluxes are matched. The heat flux distributions are determined in a postprocessing stage after the inverse problem is solved. The second approach provides a tremendous advantage in solving the inverse problem, particularly in 3d applications, and it is recommended as the method of choice for this class of problems. It can be noted that the ga reconstructed heat flux distributions are robust, yielding accurate results to both exact and errorladen inputs. In all cases in this study, results from experiments are simulated using a full conjugate heat transfer (cht) finite volume models which incorporate the interactions of the external convection in the hot turbulent gas, internal convection within the cooling plena, and the heat conduction in the metal endwall/shroud region. Extensive numerical investigations are undertaken to demonstrate the significant importance of conjugate heat transfer in film cooling applications and to identify the implications of various turbulence models in the prediction of accurate and more realistic surface temperatures and heat fluxes in the cht simulations. These, in turn, are used to provide numerical inputs to the inverse problem. Single and multiple cooling slots, cylindrical cooling holes, and fanshaped cooling holes are considered in this study. The turbulence closure is modeled using several twoequation approach, the fourequation turbulence model, as well as five and seven moment reynolds stress models. The predicted results, by the different turbulence models, for the cases of adiabatic and conjugate models, are compared to experimental data reported in the open literature. Results show the significant effects of conjugate heat transfer on the temperature field in the film cooling hole region, and the additional heating up of the cooling jet itself. Moreover, results from the detailed numerical studies presented in this study validate the inverse problem approaches and reveal good agreement between the bem/ga reconstructed heat fluxes and the cht simulated heat fluxes along the inaccessible cooling slot/hole walls
Show less  Date Issued
 2004
 Identifier
 CFE0000166, ucf:52896
 Format
 Document (PDF)
 PURL
 http://purl.flvc.org/ucf/fd/CFE0000166
 Title
 ELECTRICAL CAPACITANCE VOLUME TOMOGRAPHY OF HIGH CONTRAST DIELECTRICS USING A CUBOID GEOMETRY.
 Creator

Nurge, Mark, Schelling, Patrick, University of Central Florida
 Abstract / Description

An Electrical Capacitance Volume Tomography system has been created for use with a new image reconstruction algorithm capable of imaging high contrast dielectric distributions. The electrode geometry consists of two 4 x 4 parallel planes of copper conductors connected through custom built switch electronics to a commercially available capacitance to digital converter. Typical electrical capacitance tomography (ECT) systems rely solely on mutual capacitance readings to reconstruct images of...
Show moreAn Electrical Capacitance Volume Tomography system has been created for use with a new image reconstruction algorithm capable of imaging high contrast dielectric distributions. The electrode geometry consists of two 4 x 4 parallel planes of copper conductors connected through custom built switch electronics to a commercially available capacitance to digital converter. Typical electrical capacitance tomography (ECT) systems rely solely on mutual capacitance readings to reconstruct images of dielectric distributions. This dissertation presents a method of reconstructing images of high contrast dielectric materials using only the self capacitance measurements. By constraining the unknown dielectric material to one of two values, the inverse problem is no longer illdetermined. Resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminum structure inserted at different positions within the sensing region. Comparisons with standard two dimensional ECT systems highlight the capabilities and limitations of the electronics and reconstruction algorithm.
Show less  Date Issued
 2007
 Identifier
 CFE0001591, ucf:47119
 Format
 Document (PDF)
 PURL
 http://purl.flvc.org/ucf/fd/CFE0001591
 Title
 ESTIMATION OF OCEANIC RAINFALL USING PASSIVE AND ACTIVE MEASUREMENTS FROM SEAWINDS SPACEBORNE MICROWAVE SENSOR.
 Creator

Ahmad, Khalil, Jones, Linwood, University of Central Florida
 Abstract / Description

The Ku band microwave remote sensor, SeaWinds, was developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Two identical SeaWinds instruments were launched into space. The first was flown onboard NASA QuikSCAT satellite which has been orbiting the Earth since June 1999, and the second instrument flew onboard the Japanese Advanced Earth Observing Satellite II (ADEOSII) from December 2002 till October 2003 when an irrecoverable solar panel failure...
Show moreThe Ku band microwave remote sensor, SeaWinds, was developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Two identical SeaWinds instruments were launched into space. The first was flown onboard NASA QuikSCAT satellite which has been orbiting the Earth since June 1999, and the second instrument flew onboard the Japanese Advanced Earth Observing Satellite II (ADEOSII) from December 2002 till October 2003 when an irrecoverable solar panel failure caused a premature end to the ADEOSII satellite mission. SeaWinds operates at a frequency of 13.4 GHz, and was originally designed to measure the speed and direction of the ocean surface wind vector by relating the normalized radar backscatter measurements to the near surface wind vector through a geophysical model function (GMF). In addition to the backscatter measurement capability, SeaWinds simultaneously measures the polarized radiometric emission from the surface and atmosphere, utilizing a ground signal processing algorithm known as the QuikSCAT / SeaWinds Radiometer (QRad / SRad). This dissertation presents the development and validation of a mathematical inversion algorithm that combines the simultaneous active radar backscatter and the passive microwave brightness temperatures observed by the SeaWinds sensor to retrieve the oceanic rainfall. The retrieval algorithm is statistically based, and has been developed using collocated measurements from SeaWinds, the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) rain rates, and Numerical Weather Prediction (NWP) wind fields from the National Centers for Environmental Prediction (NCEP). The oceanic rain is retrieved on a spacecraft wind vector cell (WVC) measurement grid that has a spatial resolution of 25 km. To evaluate the accuracy of the retrievals, examples of the passiveonly, as well as the combined active / passive rain estimates from SeaWinds are presented, and comparisons are made with the standard TRMM rain data products. Results demonstrate that SeaWinds rain measurements are in good agreement with the independent microwave rain observations obtained from TMI. Further, by applying a threshold on the retrieved rain rates, SeaWinds rain estimates can be utilized as a rain flag. In order to evaluate the performance of the SeaWinds flag, comparisons are made with the Impact based Multidimensional Histogram (IMUDH) rain flag developed by JPL. Results emphasize the powerful rain detection capabilities of the SeaWinds retrieval algorithm. Due to its broad swath coverage, SeaWinds affords additional independent sampling of the oceanic rainfall, which may contribute to the future NASA's Precipitation Measurement Mission (PMM) objectives of improving the global sampling of oceanic rain within 3 hour windows. Also, since SeaWinds is the only sensor onboard QuikSCAT, the SeaWinds rain estimates can be used to improve the flagging of raincontaminated oceanic wind vector retrievals. The passiveonly rainfall retrieval algorithm (QRad / SRad) has been implemented by JPL as part of the level 2B (L2B) science data product, and can be obtained from the Physical Oceanography Distributed Data Archive (PO.DAAC).
Show less  Date Issued
 2007
 Identifier
 CFE0001969, ucf:47441
 Format
 Document (PDF)
 PURL
 http://purl.flvc.org/ucf/fd/CFE0001969