Current Search: low cycle fatigue (x)
View All Items
- Title
- METHODS OF EXTRAPOLATING LOW CYCLE FATIGUE DATA TO HIGH STRESS AMPLITUDES.
- Creator
-
Radonovich, David, Gordon, Ali, University of Central Florida
- Abstract / Description
-
Modern gas turbine component design applies much effort into prediction and avoidance of fatigue. Advances in the prediction of low-cycle fatigue (LCF) cracks will reduce repair and replacement costs of turbine components. These cracks have the potential to cause component failure. Regression modeling of low-cycle fatigue (LCF)test data is typically restricted for use over the range of the test data. It is often difficult to characterize the plastic strain curve fit constants when the plastic...
Show moreModern gas turbine component design applies much effort into prediction and avoidance of fatigue. Advances in the prediction of low-cycle fatigue (LCF) cracks will reduce repair and replacement costs of turbine components. These cracks have the potential to cause component failure. Regression modeling of low-cycle fatigue (LCF)test data is typically restricted for use over the range of the test data. It is often difficult to characterize the plastic strain curve fit constants when the plastic strain is a small fraction of the total strain acquired. This is often the case with high strength, moderate ductility Ni-base superalloys. The intent of this project is to identify the optimal technique for extrapolating LCF test results into stress amplitudes approaching the ultimate strength. The proposed method to accomplish this is by finding an appropriate upper and lower bounds for the cyclic stress-strain and strain-life equations. Techniques investigated include: monotonic test data anchor points, strain-compatibility, and temperature independence of the Coffin-Manson relation. A Ni-base superalloy (IN738 LC) data set with fully reversed fatigue tests at several elevated temperatures with minimal plastic strain relative to the total strain range was used to model several options to represent the upper and lower bounds of material behavior. Several high strain LCF tests were performed with stress amplitudes approaching the ultimate strength. An augmented data set was developed by combining the high strain data with the original data set. The effectiveness of the bounding equations is judged by comparing the bounding equation results with the base data set to a linear regression model using the augmented data set.
Show less - Date Issued
- 2007
- Identifier
- CFE0001891, ucf:47410
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001891
- Title
- CONJUGATE HEAT TRANSFER ANALYSIS OF COMBINED REGENERATIVE AND DISCRETE FILM COOLING IN A ROCKET NOZZLE.
- Creator
-
Pearce, Charlotte M, Kapat, Jayanta, University of Central Florida
- Abstract / Description
-
Conjugate heat transfer analysis has been carried out on an 89kN thrust chamber in order to evaluate whether combined discrete film cooling and regenerative cooling in a rocket nozzle is feasible. Several cooling configurations were tested against a baseline design of regenerative cooling only. New designs include combined cooling channels with one row of discrete film cooling holes near the throat of the nozzle, and turbulated cooling channels combined with a row of discrete film cooling...
Show moreConjugate heat transfer analysis has been carried out on an 89kN thrust chamber in order to evaluate whether combined discrete film cooling and regenerative cooling in a rocket nozzle is feasible. Several cooling configurations were tested against a baseline design of regenerative cooling only. New designs include combined cooling channels with one row of discrete film cooling holes near the throat of the nozzle, and turbulated cooling channels combined with a row of discrete film cooling holes. Blowing ratio and channel mass flow rate were both varied for each design. The effectiveness of each configuration was measured via the maximum hot gas-side nozzle wall temperature, which can be correlated to number of cycles to failure. A target maximum temperature of 613K was chosen. Combined film and regenerative cooling, when compared to the baseline regenerative cooling, reduced the hot gas side wall temperature from 667K to 638K. After adding turbulators to the cooling channels, combined film and regenerative cooling reduced the temperature to 592K. Analysis shows that combined regenerative and film cooling is feasible with significant consequences, however further improvements are possible with the use of turbulators in the regenerative cooling channels.
Show less - Date Issued
- 2016
- Identifier
- CFH2000138, ucf:45923
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000138
- Title
- AN UNCERTAINTY QUANTIFICATION OF THE VARIATION OF INTERNAL HEAT TRANSFER COEFFICIENTS AND THE EFFECT ON AIRFOIL LIFE.
- Creator
-
Marsh, Jan, Kapat, Jayanta, University of Central Florida
- Abstract / Description
-
Uncertainty in accurately knowing applied internal heat transfer coefficients inside of a cooling passage can lead to variability in predicting low cycle fatigue life of a turbine vane or blade. Under-predicting a life value for a turbine part can have disastrous effects on the engine as a whole, and can negate efforts in innovative design for advanced cooling techniques for turbine components. Quantification of this fatigue life uncertainty utilizing a computational framework is the primary...
Show moreUncertainty in accurately knowing applied internal heat transfer coefficients inside of a cooling passage can lead to variability in predicting low cycle fatigue life of a turbine vane or blade. Under-predicting a life value for a turbine part can have disastrous effects on the engine as a whole, and can negate efforts in innovative design for advanced cooling techniques for turbine components. Quantification of this fatigue life uncertainty utilizing a computational framework is the primary objective of this thesis. Through the use of probabilistic design methodologies a process is developed to simulate uncertainties of internal heat transfer coefficient, which are then applied to the aft section of a non-rotating turbine blade component, internally cooled through a multi-pass serpentine channel. While keeping all other parameters constant internal heat transfer coefficients are varied according to a prescribed uncertainty range throughout the passages. The effect on the low cycle fatigue life of the airfoil is then evaluated at three discrete locations: near the base of the airfoil, towards the tip, and at mid-span. A generic low cycle fatigue life prediction model is used for these evaluations. Even though the probabilistic design process uses independent random numbers to simulate the variation, in reality, heat transfer coefficients at points located closely together should be correlated. For this reason, an autocorrelation function is implemented. By changing the value of this function the strength of the correlation of neighboring internal heat transfer coefficients to each other over a certain distance can be controlled. In order to test the effect that this correlation strength has on the low cycle fatigue life calculation, low and high values are chosen and analyzed. The magnitude of the prescribed uncertainty range of the internal heat transfer coefficient variation is varied to further study the effects on life. Investigated values include 5%, 10% and 20% for the straight ribbed passages and 10%, 20%, and 40% for both the tip and hub turns. As expected there is a significant dependence of low cycle fatigue life to the variation in internal heat transfer coefficients. For the 20/40% case, variations in life as high as 50-60% are recorded, furthermore a trend is observed showing that as the magnitude of the uncertainty range of internal heat transfer coefficients narrows so does the range of the low cycle fatigue life uncertainty.
Show less - Date Issued
- 2010
- Identifier
- CFE0003496, ucf:48975
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003496
- Title
- A Study On The Plasticity And Fracture Behaviors Of Inconel 718 Under Multiaxial Stress And Extremely Low Cycle Fatigue Loadings.
- Creator
-
Algarni, Mohammed, Bai, Yuanli, Gordon, Ali, Gou, Jihua, University of Central Florida
- Abstract / Description
-
Engineering materials and structures are usually subjected to multiaxial stress states loading due to geometrical effects, residual stresses, or multi-directional loading. Ductile fracture and Extremely Low Cycle Fatigue (ELCF), less than 100 cycles to fail, are two common and co-exist failure modes in many engineering structures. However, the linkage between these two failure modes under multi-axial loading conditions has never been systematically studied. This research summarizes an...
Show moreEngineering materials and structures are usually subjected to multiaxial stress states loading due to geometrical effects, residual stresses, or multi-directional loading. Ductile fracture and Extremely Low Cycle Fatigue (ELCF), less than 100 cycles to fail, are two common and co-exist failure modes in many engineering structures. However, the linkage between these two failure modes under multi-axial loading conditions has never been systematically studied. This research summarizes an extensive work of experimental and numerical studies of ductile fracture and ELCF under different stress states for nickel-base superalloy material (")IN718(") under room temperature. Specially designed specimens and tests were used to achieve desired multi-axial loading conditions. Four types of specimens with four different shapes, total of 16 specimens, were tested until complete fracture. Two groups of tests were conducted: (a) round bar specimens with different notches; (b) plane strain specimens. Experimental data of force-displacement curves and strain-life graph were plotted for analysis. The first part of this research focuses on a numerical study of monotonic tensile loading with different stress states. This part of the investigation deeply studies the dependency of the hydrostatic stress (related to stress triaxiality) and the normalized third invariant of the deviatoric stress (related to Lode angle parameter) in plastic behavior and ductile fracture. Constitutive plasticity model proposed by Bai (&) Wierzbicki and the modified Mohr-Coulomb (MMC) ductile fracture model were adapted with several extensions. The plasticity model and ductile fracture criterion were implemented into ABAQUS through a user-defined material subroutine (VUMAT). Extensive experimental results are used to calibrate the models. After setting up the parameter optimization during model calibration, the experimental results and numerical simulations were well correlated in both plasticity deformation and fracture initiation. A 3D fracture locus of Inconel 718 was constructed by knowing the strain at fracture, stress triaxiality, and normalized Lode angle of the tested samples. By introducing a suitable element post-failure behavior, not only the fracture initiation but also the fracture propagation modes are successfully predicted in finite element simulations for monotonic loading.The second part extensively investigates ELCF on IN718. The IN718 cyclic plasticity behavior and the Bauschinger effect are studied and simulated using the well-known nonlinear kinematic hardening law by J. L. Chaboche and his co-workers under different strain amplitudes and different stress states. Moreover, the Voc(&)#233; isotropic hardening law was applied in combination with the Bai-Wierzbicki plasticity model. The Bai-Wierzbicki plasticity model was used to capture the effect of different stress states on ELCF based on the stress triaxiality and Lode angle parameters. On the other hand, the modified Mohr(-)Coulomb (MMC) ductile fracture model for monotonic loading was extended by a new damage evolution rule to cover the ELCF regime. A new parameter was introduced to represent the effect of the cyclic loading at ELCF. The new parameter is responsible for capturing the change of non-proportional loading direction between the current stress and the backstress tensors. The model explores the underlying damage and fracture mechanisms through the equivalent plastic strain evolution under cycling loading. Finally, the mechanism linkage between these two failure modes was studied. A comparison between the experimental data and the finite element simulation results (by Abaqus/Explicit) shows very good correlations. In addition, fractographic examinations, analysis, and finite element simulations are presented.
Show less - Date Issued
- 2017
- Identifier
- CFE0006553, ucf:51338
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006553
- Title
- Characterization of Anisotropic Mechanical Performance of As-Built Additively Manufactured Metals.
- Creator
-
Siddiqui, Sanna, Gordon, Ali, Raghavan, Seetha, Bai, Yuanli, Sohn, Yongho, University of Central Florida
- Abstract / Description
-
Additive manufacturing (AM) technologies use a 3D Computer Aided Design (CAD) model to develop a component through a deposition and fusion layer process, allowing for rapid design and geometric flexibility of metal components, for use in the aerospace, energy and biomedical industries. Challenges exist with additive manufacturing that limits its replacement of conventional manufacturing techniques, most especially a comprehensive understanding of the anisotropic behavior of these materials...
Show moreAdditive manufacturing (AM) technologies use a 3D Computer Aided Design (CAD) model to develop a component through a deposition and fusion layer process, allowing for rapid design and geometric flexibility of metal components, for use in the aerospace, energy and biomedical industries. Challenges exist with additive manufacturing that limits its replacement of conventional manufacturing techniques, most especially a comprehensive understanding of the anisotropic behavior of these materials and how it is reflected in observed tensile, torsional and fatigue mechanical responses. As such, there is a need to understand how the build orientation of as-built additively manufactured metals, affects mechanical performance (e.g. monotonic and cyclic behavior, cyclically hardening/softening behavior, plasticity effects on fatigue life etc.); and to use constitutive modeling to both support experimental findings, and provide approximations of expected behavior (e.g. failure surfaces, monotonic and cyclic response, correlations between tensile and fatigue properties), for orientations and experiments not tested, due to the expensive cost associated with AM. A comprehensive framework has been developed to characterize the anisotropic behavior of as-built additively manufactured metals (i.e. Stainless Steel GP1 (SS GP1), similar in chemical composition to Stainless Steel 17-4PH), through a series of mechanical testing, microscopic evaluation and constitutive modeling, which were used to identify a reduced specimen size for characterizing these materials. An analysis of the torsional response of additively manufactured Inconel 718 has been performed to assess the impact of build orientation and as-built conditions on the shearing behavior of this material. Experimental results from DMLS SS GP1 and AM Inconel 718 from literature were used to constitutively model the material responses of these additively manufactured metals. Overall, this framework has been designed to serve as standard, from which build orientation selection can be used to meet specific desired industry requirements.
Show less - Date Issued
- 2018
- Identifier
- CFE0007097, ucf:52883
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007097