Current Search: magnetic properties (x)
View All Items
- Title
- Optical and Magnetic properties of nanostructures.
- Creator
-
Nayyar, Neha, Rahman, Talat, Stolbov, Sergey, Ishigami, Marsahir, Hernandez, Florencio, University of Central Florida
- Abstract / Description
-
In this thesis, Density Functional Theory and Time-Dependent Density-Functional Theory approaches are applied to study the optical and magnetic properties of several types of nanostructures. In studies of the optical properties we mainly focused on the plasmonic and excitonic effects in pure and transition metal-doped noble metal nanochains and their conglomerates. In the case of pure noble metal chains, it was found that the (collective) plasmon mode is pronounceable when the number of atoms...
Show moreIn this thesis, Density Functional Theory and Time-Dependent Density-Functional Theory approaches are applied to study the optical and magnetic properties of several types of nanostructures. In studies of the optical properties we mainly focused on the plasmonic and excitonic effects in pure and transition metal-doped noble metal nanochains and their conglomerates. In the case of pure noble metal chains, it was found that the (collective) plasmon mode is pronounceable when the number of atoms in the chain is larger than 5. The plasmon energy decreases with further with increasing number of atoms (N) and is almost N-independent when N is larger than 20. In the case of coupled pure chains it was found that the plasmon energy grows as square root of the number of chains, and reaches the visible light energy 1.8eV for the case of three parallel chains. Doping of pure Au chains with transition-metal atoms leads in many cases to formation of additional plasmon peaks close in energy to the undoped chain peak. This peak comes from the local charge oscillations around the potential minima created by the impurity atom. The effect is especially pronounced for Ni-doped chains. In the multiple-chain case, we find an unusual hybridization of the two different (local and collective) plasmon modes. Changing the chain size and chemical composition in the array can be used to tune the absorption properties of nanochains. The case of coupled finite (plasmonic) and infinite (semiconductor, excitonic) chains was also analyzed. We find that one can get significant exciton-plasmon coupling, including hybridized modes and energy transfer between these excitations, in the case of doped chains. The impurity atoms are found to work as attraction centers for excitons. This can be used to transform the exciton energy into local plasmon oscillations with consequent emission at desired point (at which the impurity is located). In a related study the optical properties of single layer MoS2 was analyzed with a focus on the possibility of ultrafast emission, In particular, it was found that the system can emit in femto-second regime under ultrafast laser pulse excitations. Finally, we have studied the magnetic properties of FeRh nanostructures to probe whether there is an antiferromagnetic to ferromagnetic transition as a function of the ratio of Fe and Rh atoms, as in the bulk alloy.. Surprisingly, the ferromagnetic phase is found to be much more stable for these nanostructures as compared to the bulk, which suggests that band-type effects may be responsible for this transition in the bulk, i.e. the transition cannot be described in terms of modification of the Heisenberg model parameters.
Show less - Date Issued
- 2014
- Identifier
- CFE0005221, ucf:50650
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005221
- Title
- SURVEY OF METEORITE PHYSICAL PROPERTIES: DENSITY, POROSITY AND MAGNETIC SUSCEPTIBILITY.
- Creator
-
Macke, Robert, Britt, Daniel, University of Central Florida
- Abstract / Description
-
The measurement of meteorite physical properties (i.e. density, porosity, magnetic susceptibility) supplements detailed chemical and isotopic analyses for small samples (thin sections or ~300 mg portions) by providing whole-rock data for samples massing in the tens of grams. With the advent of fast, non-destructive and non-contaminating measurement techniques including helium ideal-gas pycnometry for grain density, the Archimedean ÃÂ"glass beadÃÂ" method...
Show moreThe measurement of meteorite physical properties (i.e. density, porosity, magnetic susceptibility) supplements detailed chemical and isotopic analyses for small samples (thin sections or ~300 mg portions) by providing whole-rock data for samples massing in the tens of grams. With the advent of fast, non-destructive and non-contaminating measurement techniques including helium ideal-gas pycnometry for grain density, the Archimedean ÃÂ"glass beadÃÂ" method for bulk density and (with grain density) porosity, and the use of low-field magnetometry for magnetic susceptibility, all of which rely on compact and portable equipment, this has enabled a comprehensive survey of these physical properties for a wide variety of meteorites. This dissertation reports on the results of that survey, which spanned seven major museum and university meteorite collections as well as the Vatican collection. Bulk and grain densities, porosities and magnetic susceptibilities are reported for 1228 stones from 664 separate meteorites, including several rare meteorite types that are underrepresented in previous studies. Summarized here are data for chondrites (carbonaceous, ordinary and enstatite) and stony achondrites. Several new findings have resulted from this study. From the use of a ÃÂ"weathering modulusÃÂ" based on grain density and magnetic susceptibility to quantify weathering in finds, it is observed that the degree of weathering of ordinary chondrites is dependent on their initial porosity, which becomes reduced to less than ~8% for all finds, but for enstatite chondrites weathering actually increases porosity. Grain density and magnetic susceptibility, which have been shown to distinguish H, L and LL ordinary chondrites, also may distinguish shergottites, nakhlites and chassignites from each other, but the two groups of enstatite chondrites (EH and EL) remain indistinguishable in these properties. H chondrite finds exhibit a slight negative trend in porosity with increasing petrographic type, and all chondrite falls together exhibit a pronounced negative trend in porosity spanning all petrographic types. The overall trend corresponds roughly to a positive trend in porosities with respect to both degree of oxidation and percentage of matrix. It also corresponds to the macroporosities of analogous asteroids. These traits constrain models of conditions in the solar nebula and the formation of chondrite parent-body precursors.
Show less - Date Issued
- 2010
- Identifier
- CFE0003424, ucf:48420
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003424
- Title
- Electronic, Optical, and Magnetic Properties of Graphene and Single-Layer Transition Metal Dichalcogenides in the Presence of Defects.
- Creator
-
Khan, Mahtab, Leuenberger, Michael, Mucciolo, Eduardo, Saha, Haripada, Tetard, Laurene, Schoenfeld, Winston, University of Central Florida
- Abstract / Description
-
Two-dimensional (2D) materials, such as graphene and single-layer (SL) transition metal dichalcogenides (TMDCs), have attracted a lot of attention due to their fascinating electronic and optical properties. Graphene was the first 2D material that has successfully been exfoliated from bulk graphite in 2004. In graphene, charge carriers interacting with the honeycomb lattice of carbonatoms of graphene to appear as massless Dirac fermions. Massless quasiparticles with linear dispersion are also...
Show moreTwo-dimensional (2D) materials, such as graphene and single-layer (SL) transition metal dichalcogenides (TMDCs), have attracted a lot of attention due to their fascinating electronic and optical properties. Graphene was the first 2D material that has successfully been exfoliated from bulk graphite in 2004. In graphene, charge carriers interacting with the honeycomb lattice of carbonatoms of graphene to appear as massless Dirac fermions. Massless quasiparticles with linear dispersion are also observed in surface states of 3D topological insulators and quantum Hall edgestates. My first project deals with the two-dimensional Hong-Ou-Mandel (HOM) type interferenceexperiment for massless Dirac fermions in graphene and 3D topological insulators. Since masslessDirac fermions exhibit linear dispersion, similar to photons in vacuum, they can be used to observethe HOM interference intensity pattern as a function of the delay time between two massless Dirac fermions. My further projects and the major part of this dissertation deal with single-layer (SL) transition metal dichalcogenides (TMDCs), such as MoS$_2$, WS$_2$, MoSe$_2$ and WSe$_2$, which have recently emerged as a new family of two-dimensional (2D) materials with great interest, not only from the fundamental point of view, but also because of their potential application to ultrathin electronic and optoelectronic devices. In contrast to graphene, SL TMDCs are direct band semiconductors and exhibit large intrinsic spin-orbit coupling (SOC), originating from the d orbitals of transition metal atoms. Wafer-scale production of SL TMDCs is required for industrial applications. It has been shown that artificially grown samples of SL TMDCs through various experimental techniques, such as physical vapor deposition (PVD), chemical vapor deposition (CVD), and molecular beam epitaxy (MBE), are not perfect, instead certain type of imperfections such as point defects are always found to be present in the grown samples. Defects compromise the crystallinity of the sample, which results in reduced carrier mobility and deteriorated optical efficiency. However, defects are not always unwanted; in fact, defects can play an important role in tailoring electronic, optical, and magnetic properties of materials. Using Density functional theory we investigate the impact of point defects on the electronic, optical, and magnetic properties of SL TMDCs. First, we show that certain vacancy defects lead to localized defect states, which in turn give rise to sharp transitions in in-plane and out-of-plane optical susceptibilities of SL TMDCs. Secondly, we show that a naturally occurring antisite defect Mo$_S$ in PVD grown MoS$_2$ is magnetic in nature with a magneticmoment of 2$\mu_B$, and remarkably exhibit an exceptionally large atomic scale magnetic anisotropy energy (MAE) of ~ 500 eV. Both magnetic moment and MAE can be tuned by shifting the position of the Fermi level which can be achieved either by gate voltage or by chemical doping. Thirdly, we argue that the antisite defect Se$_W$ in WSe$_2$ leads to long lived localized excited states, which can explain the observed single quantum emitters in CVD grown WSe$_2$ samples, with potential application to quantum cryptography.
Show less - Date Issued
- 2018
- Identifier
- CFE0007030, ucf:52047
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007030
- Title
- MAGNETIC PROPERTIES OF SPUTTER DEPOSITED FE-BASED AMORPHOUS THIN FILMS FOR RESONATOR APPLICATION.
- Creator
-
China, Chaitali, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
In this study we investigate the magnetic properties of Fe-based amorphous thin films. Fe1-x-y-zBxSiyCz, Fe80-xNixB20, Fe80-xMnxB20, and Fe73-xMnxB27 films were deposited on silicon and glass substrates in a DC and RF magnetron sputtering system. Inductive magnetic measurements were performed to investigate the magnetic properties, including induced anisotropy and magnetostriction, of the as-deposited and annealed films using an M-H Looper. The chemical composition of the films was...
Show moreIn this study we investigate the magnetic properties of Fe-based amorphous thin films. Fe1-x-y-zBxSiyCz, Fe80-xNixB20, Fe80-xMnxB20, and Fe73-xMnxB27 films were deposited on silicon and glass substrates in a DC and RF magnetron sputtering system. Inductive magnetic measurements were performed to investigate the magnetic properties, including induced anisotropy and magnetostriction, of the as-deposited and annealed films using an M-H Looper. The chemical composition of the films was characterized using secondary ion mass spectroscopy (SIMS). The physical thickness of the films was determined by use of a stylus profilometer. The M-H Looper studies indicated that the induced anisotropy (Hk) depends strongly on the nickel concentration as well as on the annealing conditions, specifically the time and temperature of the annealing process. For the same metalloid concentration, the induced anisotropy has a maximum as a function of Ni. For the same nickel concentration and annealing time, it was found that the value of Hk decreases with the increase in annealing temperature. For each composition studied, low temperature long time annealing showed a higher value of Hk compared to high temperature short time annealing. From the magnetostriction values of Fe80-xNixB20 alloys, it was found that the sputter deposited films show similar trend but differ in magnitude when compared with ribbon samples. The magnetostriction of annealed thin films is found to be representative of ribbon samples. A potential composition modification to improve the strength of the field induced anisotropy is the addition of low levels of Mn.
Show less - Date Issued
- 2006
- Identifier
- CFE0001275, ucf:46896
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001275