Current Search: motion estimation (x)
View All Items
- Title
- RECONFIGURABLE COMPUTING FOR VIDEO CODING.
- Creator
-
Huang, Jian, Lee, Jooheung, University of Central Florida
- Abstract / Description
-
Video coding is widely used in our daily life. Due to its high computational complexity, hardware implementation is usually preferred. In this research, we investigate both ASIC hardware design approach and reconfigurable hardware design approach for video coding applications. First, we present a unified architecture that can perform Discrete Cosine Transform (DCT), Inverse Discrete Cosine Transform (IDCT), DCT domain motion estimation and compensation (DCT-ME/MC). Our proposed architecture...
Show moreVideo coding is widely used in our daily life. Due to its high computational complexity, hardware implementation is usually preferred. In this research, we investigate both ASIC hardware design approach and reconfigurable hardware design approach for video coding applications. First, we present a unified architecture that can perform Discrete Cosine Transform (DCT), Inverse Discrete Cosine Transform (IDCT), DCT domain motion estimation and compensation (DCT-ME/MC). Our proposed architecture is a Wavefront Array-based Processor with a highly modular structure consisting of 8*8 Processing Elements (PEs). By utilizing statistical properties and arithmetic operations, it can be used as a high performance hardware accelerator for video transcoding applications. We show how different core algorithms can be mapped onto the same hardware fabric and can be executed through the pre-defined PEs. In addition to the simplified design process of the proposed architecture and savings of the hardware resources, we also demonstrate that high throughput rate can be achieved for IDCT and DCT-MC by fully utilizing the sparseness property of DCT coefficient matrix. Compared to fixed hardware architecture using ASIC design approach, reconfigurable hardware design approach has higher flexibility, lower cost, and faster time-to-market. We propose a self-reconfigurable platform which can reconfigure the architecture of DCT computations during run-time using dynamic partial reconfiguration. The scalable architecture for DCT computations can compute different number of DCT coefficients in the zig-zag scan order to adapt to different requirements, such as power consumption, hardware resource, and performance. We propose a configuration manager which is implemented in the embedded processor in order to adaptively control the reconfiguration of scalable DCT architecture during run-time. In addition, we use LZSS algorithm for compression of the partial bitstreams and on-chip BlockRAM as a cache to reduce latency overhead for loading the partial bitstreams from the off-chip memory for run-time reconfiguration. A hardware module is designed for parallel reconfiguration of the partial bitstreams. The experimental results show that our approach can reduce the external memory accesses by 69% and can achieve 400 MBytes/s reconfiguration rate. Detailed trade-offs of power, throughput, and quality are investigated, and used as a criterion for self-reconfiguration. Prediction algorithm of zero quantized DCT (ZQDCT) to control the run-time reconfiguration of the proposed scalable architecture has been used, and 12 different modes of DCT computations including zonal coding, multi-block processing, and parallel-sequential stage modes are supported to reduce power consumptions, required hardware resources, and computation time with a small quality degradation. Detailed trade-offs of power, throughput, and quality are investigated, and used as a criterion for self-reconfiguration to meet the requirements set by the users.
Show less - Date Issued
- 2010
- Identifier
- CFE0003262, ucf:48522
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003262
- Title
- PATTERNS OF MOTION: DISCOVERY AND GENERALIZED REPRESENTATION.
- Creator
-
Saleemi, Imran, Shah, Mubarak, University of Central Florida
- Abstract / Description
-
In this dissertation, we address the problem of discovery and representation of motion patterns in a variety of scenarios, commonly encountered in vision applications. The overarching goal is to devise a generic representation, that captures any kind of object motion observable in video sequences. Such motion is a significant source of information typically employed for diverse applications such as tracking, anomaly detection, and action and event recognition. We present statistical...
Show moreIn this dissertation, we address the problem of discovery and representation of motion patterns in a variety of scenarios, commonly encountered in vision applications. The overarching goal is to devise a generic representation, that captures any kind of object motion observable in video sequences. Such motion is a significant source of information typically employed for diverse applications such as tracking, anomaly detection, and action and event recognition. We present statistical frameworks for representation of motion characteristics of objects, learned from tracks or optical flow, for static as well as moving cameras, and propose algorithms for their application to a variety of problems. The proposed motion pattern models and learning methods are general enough to be employed in a variety of problems as we demonstrate experimentally. We first propose a novel method to model and learn the scene activity, observed by a static camera. The motion patterns of objects in the scene are modeled in the form of a multivariate non-parametric probability density function of spatiotemporal variables (object locations and transition times between them). Kernel Density Estimation (KDE) is used to learn this model in a completely unsupervised fashion. Learning is accomplished by observing the trajectories of objects by a static camera over extended periods of time. The model encodes the probabilistic nature of the behavior of moving objects in the scene and is useful for activity analysis applications, such as persistent tracking and anomalous motion detection. In addition, the model also captures salient scene features, such as, the areas of occlusion and most likely paths. Once the model is learned, we use a unified Markov Chain Monte-Carlo (MCMC) based framework for generating the most likely paths in the scene, improving foreground detection, persistent labelling of objects during tracking and deciding whether a given trajectory represents an anomaly to the observed motion patterns. Experiments with real world videos are reported which validate the proposed approach. The representation and estimation framework proposed above, however, has a few limitations. This algorithm proposes to use a single global statistical distribution to represent all kinds of motion observed in a particular scene. It therefore, does not find a separation between multiple semantically distinct motion patterns in the scene. Instead, the learned model is a joint distribution over all possible patterns followed by objects. To overcome this limitation, we then propose a superior method for the discovery and statistical representation of motion patterns in a scene. The advantages of this approach over the first one are two-fold: first, this model is applicable to scenes of dense crowded motion where tracking may not be feasible, and second, it distinguishes between motion patterns that are distinct at a semantic level of abstraction. We propose a mixture model representation of salient patterns of optical flow, and present an algorithm for learning these patterns from dense optical flow in a hierarchical, unsupervised fashion. Using low level cues of noisy optical flow, K-means is employed to initialize a Gaussian mixture model for temporally segmented clips of video. The components of this mixture are then filtered and instances of motion patterns are computed using a simple motion model, by linking components across space and time. Motion patterns are then initialized and membership of instances in different motion patterns is established by using KL divergence between mixture distributions of pattern instances. Finally, a pixel level representation of motion patterns is proposed by deriving conditional expectation of optical flow. Results of extensive experiments are presented for multiple surveillance sequences containing numerous patterns involving both pedestrian and vehicular traffic. The proposed method exploits optical flow as the low level feature and performs a hierarchical clustering to obtain motion patterns; and we observe that the use of optical flow is also an integral part of a variety of other vision applications, for example, as features based representation of human actions. We, therefore, propose a new representation for articulated human actions using the motion patterns. The representation is based on hierarchical clustering of observed optical flow in four dimensional, spatial and motion flow space. The automatically discovered motion patterns, are the primitive actions, representative of flow at salient regions on the human body, much like trajectories of body joints, which are notoriously difficult to obtain automatically. The proposed method works in a completely unsupervised fashion, and in sharp contrast to state of the art representations like bag of video words, provides a truly semantically meaningful representation. Each primitive action depicts the most atomic sub-action, like left arm moving upwards, or right leg moving downward and leftward, and is represented by a mixture of four dimensional Gaussian distributions. A sequence of primitive actions are discovered in the test video, and labelled by computing the KL divergence between mixtures. The entire video sequence containing the human action, is thus reduced to a simple string, which is matched against similar strings of training videos to classify the action. The string matching is performed by global alignment, using the well-known Needleman-Wunsch algorithm. Experiments reported on multiple human actions data sets, confirm the validity, simplicity, and semantically meaningful nature of the proposed representation. Results obtained are encouraging and comparable to the state of the art.
Show less - Date Issued
- 2011
- Identifier
- CFE0003646, ucf:48836
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003646
- Title
- Sampling and Subspace Methods for Learning Sparse Group Structures in Computer Vision.
- Creator
-
Jaberi, Maryam, Foroosh, Hassan, Pensky, Marianna, Gong, Boqing, Qi, GuoJun, Pensky, Marianna, University of Central Florida
- Abstract / Description
-
The unprecedented growth of data in volume and dimension has led to an increased number of computationally-demanding and data-driven decision-making methods in many disciplines, such as computer vision, genomics, finance, etc. Research on big data aims to understand and describe trends in massive volumes of high-dimensional data. High volume and dimension are the determining factors in both computational and time complexity of algorithms. The challenge grows when the data are formed of the...
Show moreThe unprecedented growth of data in volume and dimension has led to an increased number of computationally-demanding and data-driven decision-making methods in many disciplines, such as computer vision, genomics, finance, etc. Research on big data aims to understand and describe trends in massive volumes of high-dimensional data. High volume and dimension are the determining factors in both computational and time complexity of algorithms. The challenge grows when the data are formed of the union of group-structures of different dimensions embedded in a high-dimensional ambient space.To address the problem of high volume, we propose a sampling method referred to as the Sparse Withdrawal of Inliers in a First Trial (SWIFT), which determines the smallest sample size in one grab so that all group-structures are adequately represented and discovered with high probability. The key features of SWIFT are: (i) sparsity, which is independent of the population size; (ii) no prior knowledge of the distribution of data, or the number of underlying group-structures; and (iii) robustness in the presence of an overwhelming number of outliers. We report a comprehensive study of the proposed sampling method in terms of accuracy, functionality, and effectiveness in reducing the computational cost in various applications of computer vision. In the second part of this dissertation, we study dimensionality reduction for multi-structural data. We propose a probabilistic subspace clustering method that unifies soft- and hard-clustering in a single framework. This is achieved by introducing a delayed association of uncertain points to subspaces of lower dimensions based on a confidence measure. Delayed association yields higher accuracy in clustering subspaces that have ambiguities, i.e. due to intersections and high-level of outliers/noise, and hence leads to more accurate self-representation of underlying subspaces. Altogether, this dissertation addresses the key theoretical and practically issues of size and dimension in big data analysis.
Show less - Date Issued
- 2018
- Identifier
- CFE0007017, ucf:52039
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007017
- Title
- Robust Subspace Estimation Using Low-Rank Optimization. Theory and Applications in Scene Reconstruction, Video Denoising, and Activity Recognition.
- Creator
-
Oreifej, Omar, Shah, Mubarak, Da Vitoria Lobo, Niels, Stanley, Kenneth, Lin, Mingjie, Li, Xin, University of Central Florida
- Abstract / Description
-
In this dissertation, we discuss the problem of robust linear subspace estimation using low-rank optimization and propose three formulations of it. We demonstrate how these formulations can be used to solve fundamental computer vision problems, and provide superior performance in terms of accuracy and running time.Consider a set of observations extracted from images (such as pixel gray values, local features, trajectories...etc). If the assumption that these observations are drawn from a...
Show moreIn this dissertation, we discuss the problem of robust linear subspace estimation using low-rank optimization and propose three formulations of it. We demonstrate how these formulations can be used to solve fundamental computer vision problems, and provide superior performance in terms of accuracy and running time.Consider a set of observations extracted from images (such as pixel gray values, local features, trajectories...etc). If the assumption that these observations are drawn from a liner subspace (or can be linearly approximated) is valid, then the goal is to represent each observation as a linear combination of a compact basis, while maintaining a minimal reconstruction error. One of the earliest, yet most popular, approaches to achieve that is Principal Component Analysis (PCA). However, PCA can only handle Gaussian noise, and thus suffers when the observations are contaminated with gross and sparse outliers. To this end, in this dissertation, we focus on estimating the subspace robustly using low-rank optimization, where the sparse outliers are detected and separated through the `1 norm. The robust estimation has a two-fold advantage: First, the obtained basis better represents the actual subspace because it does not include contributions from the outliers. Second, the detected outliers are often of a specific interest in many applications, as we will show throughout this thesis. We demonstrate four different formulations and applications for low-rank optimization. First, we consider the problem of reconstructing an underwater sequence by removing the turbulence caused by the water waves. The main drawback of most previous attempts to tackle this problem is that they heavily depend on modelling the waves, which in fact is ill-posed since the actual behavior of the waves along with the imaging process are complicated and include several noise components; therefore, their results are not satisfactory. In contrast, we propose a novel approach which outperforms the state-of-the-art. The intuition behind our method is that in a sequence where the water is static, the frames would be linearly correlated. Therefore, in the presence of water waves, we may consider the frames as noisy observations drawn from a the subspace of linearly correlated frames. However, the noise introduced by the water waves is not sparse, and thus cannot directly be detected using low-rank optimization. Therefore, we propose a data-driven two-stage approach, where the first stage (")sparsifies(") the noise, and the second stage detects it. The first stage leverages the temporal mean of the sequence to overcome the structured turbulence of the waves through an iterative registration algorithm. The result of the first stage is a high quality mean and a better structured sequence; however, the sequence still contains unstructured sparse noise. Thus, we employ a second stage at which we extract the sparse errors from the sequence through rank minimization. Our method converges faster, and drastically outperforms state of the art on all testing sequences. Secondly, we consider a closely related situation where an independently moving object is also present in the turbulent video. More precisely, we consider video sequences acquired in a desert battlefields, where atmospheric turbulence is typically present, in addition to independently moving targets. Typical approaches for turbulence mitigation follow averaging or de-warping techniques. Although these methods can reduce the turbulence, they distort the independently moving objects which can often be of great interest. Therefore, we address the problem of simultaneous turbulence mitigation and moving object detection. We propose a novel three-term low-rank matrix decomposition approach in which we decompose the turbulence sequence into three components: the background, the turbulence, and the object. We simplify this extremely difficult problem into a minimization of nuclear norm, Frobenius norm, and L1 norm. Our method is based on two observations: First, the turbulence causes dense and Gaussian noise, and therefore can be captured by Frobenius norm, while the moving objects are sparse and thus can be captured by L1 norm. Second, since the object's motion is linear and intrinsically different than the Gaussian-like turbulence, a Gaussian-based turbulence model can be employed to enforce an additional constraint on the search space of the minimization. We demonstrate the robustness of our approach on challenging sequences which are significantly distorted with atmospheric turbulence and include extremely tiny moving objects. In addition to robustly detecting the subspace of the frames of a sequence, we consider using trajectories as observations in the low-rank optimization framework. In particular, in videos acquired by moving cameras, we track all the pixels in the video and use that to estimate the camera motion subspace. This is particularly useful in activity recognition, which typically requires standard preprocessing steps such as motion compensation, moving object detection, and object tracking. The errors from the motion compensation step propagate to the object detection stage, resulting in miss-detections, which further complicates the tracking stage, resulting in cluttered and incorrect tracks. In contrast, we propose a novel approach which does not follow the standard steps, and accordingly avoids the aforementioned difficulties. Our approach is based on Lagrangian particle trajectories which are a set of dense trajectories obtained by advecting optical flow over time, thus capturing the ensemble motions of a scene. This is done in frames of unaligned video, and no object detection is required. In order to handle the moving camera, we decompose the trajectories into their camera-induced and object-induced components. Having obtained the relevant object motion trajectories, we compute a compact set of chaotic invariant features, which captures the characteristics of the trajectories. Consequently, a SVM is employed to learn and recognize the human actions using the computed motion features. We performed intensive experiments on multiple benchmark datasets, and obtained promising results.Finally, we consider a more challenging problem referred to as complex event recognition, where the activities of interest are complex and unconstrained. This problem typically pose significant challenges because it involves videos of highly variable content, noise, length, frame size ... etc. In this extremely challenging task, high-level features have recently shown a promising direction as in [53, 129], where core low-level events referred to as concepts are annotated and modeled using a portion of the training data, then each event is described using its content of these concepts. However, because of the complex nature of the videos, both the concept models and the corresponding high-level features are significantly noisy. In order to address this problem, we propose a novel low-rank formulation, which combines the precisely annotated videos used to train the concepts, with the rich high-level features. Our approach finds a new representation for each event, which is not only low-rank, but also constrained to adhere to the concept annotation, thus suppressing the noise, and maintaining a consistent occurrence of the concepts in each event. Extensive experiments on large scale real world dataset TRECVID Multimedia Event Detection 2011 and 2012 demonstrate that our approach consistently improves the discriminativity of the high-level features by a significant margin.
Show less - Date Issued
- 2013
- Identifier
- CFE0004732, ucf:49835
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004732