Current Search: multirobot (x)
View All Items
- Title
- Human-Robot Interaction For Multi-Robot Systems.
- Creator
-
Lewis, Bennie, Sukthankar, Gita, Hughes, Charles, Laviola II, Joseph, Boloni, Ladislau, Hancock, Peter, University of Central Florida
- Abstract / Description
-
Designing an effective human-robot interaction paradigm is particularly important for complex tasks such as multi robot manipulation that require the human and robot to work together in a tightly coupled fashion. Although increasing the number of robots can expand the area that therobots can cover within a bounded period of time, a poor human-robot interface will ultimately compromise the performance of the team of robots. However, introducing a human operator to the team of robots, does not...
Show moreDesigning an effective human-robot interaction paradigm is particularly important for complex tasks such as multi robot manipulation that require the human and robot to work together in a tightly coupled fashion. Although increasing the number of robots can expand the area that therobots can cover within a bounded period of time, a poor human-robot interface will ultimately compromise the performance of the team of robots. However, introducing a human operator to the team of robots, does not automatically improve performance due to the difficulty of teleoperating mobile robots with manipulators. The human operator's concentration is divided not only amongmultiple robots but also between controlling each robot's base and arm. This complexity substantially increases the potential neglect time, since the operator's inability to effectively attend to each robot during a critical phase of the task leads to a significant degradation in task performance.There are several proven paradigms for increasing the efficacy of human-robot interaction: 1) multimodal interfaces in which the user controls the robots using voice and gesture; 2) configurable interfaces which allow the user to create new commands by demonstrating them; 3) adaptive interfaceswhich reduce the operator's workload as necessary through increasing robot autonomy. This dissertation presents an evaluation of the relative benefits of different types of user interfaces for multi-robot systems composed of robots with wheeled bases and three degree of freedom arms. It describes a design for constructing low-cost multi-robot manipulation systems from off the shelfparts.User expertise was measured along three axes (navigation, manipulation, and coordination), and participants who performed above threshold on two out of three dimensions on a calibration task were rated as expert. Our experiments reveal that the relative expertise of the user was the key determinant of the best performing interface paradigm for that user, indicating that good user modeling is essential for designing a human-robot interaction system that will be used for an extended period of time. The contributions of the dissertation include: 1) a model for detecting operator distraction from robot motion trajectories; 2) adjustable autonomy paradigms for reducing operator workload; 3) a method for creating coordinated multi-robot behaviors from demonstrations with a single robot; 4) a user modeling approach for identifying expert-novice differences from short teleoperation traces.
Show less - Date Issued
- 2014
- Identifier
- CFE0005198, ucf:50613
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005198
- Title
- MULTIAGENT LEARNING THROUGH INDIRECT ENCODING.
- Creator
-
D'Ambrosio, David, Stanley, Kenneth, University of Central Florida
- Abstract / Description
-
Designing a system of multiple, heterogeneous agents that cooperate to achieve a common goal is a difficult task, but it is also a common real-world problem. Multiagent learning addresses this problem by training the team to cooperate through a learning algorithm. However, most traditional approaches treat multiagent learning as a combination of multiple single-agent learning problems. This perspective leads to many inefficiencies in learning such as the problem of reinvention, whereby...
Show moreDesigning a system of multiple, heterogeneous agents that cooperate to achieve a common goal is a difficult task, but it is also a common real-world problem. Multiagent learning addresses this problem by training the team to cooperate through a learning algorithm. However, most traditional approaches treat multiagent learning as a combination of multiple single-agent learning problems. This perspective leads to many inefficiencies in learning such as the problem of reinvention, whereby fundamental skills and policies that all agents should possess must be rediscovered independently for each team member. For example, in soccer, all the players know how to pass and kick the ball, but a traditional algorithm has no way to share such vital information because it has no way to relate the policies of agents to each other.In this dissertation a new approach to multiagent learning that seeks to address these issues is presented. This approach, called multiagent HyperNEAT, represents teams as a pattern of policies rather than individual agents. The main idea is that an agent's location within a canonical team layout (such as a soccer team at the start of a game) tends to dictate its role within that team, called the policy geometry. For example, as soccer positions move from goal to center they become more offensive and less defensive, a concept that is compactly represented as a pattern. The first major contribution of this dissertation is a new method for evolving neural network controllers called HyperNEAT, which forms the foundation of the second contribution and primary focus of this work, multiagent HyperNEAT. Multiagent learning in this dissertation is investigated in predator-prey, room-clearing, and patrol domains, providing a real-world context for the approach. Interestingly, because the teams in multiagent HyperNEAT are represented as patterns they can scale up to an infinite number of multiagent policies that can be sampled from the policy geometry as needed. Thus the third contribution is a method for teams trained with multiagent HyperNEAT to dynamically scale their size without further learning. Fourth, the capabilities to both learn and scale in multiagent HyperNEAT are compared to the traditional multiagent SARSA(lamba) approach in a comprehensive study. The fifth contribution is a method for efficiently learning and encoding multiple policies for each agent on a team to facilitate learning in multi-task domains. Finally, because there is significant interest in practical applications of multiagent learning, multiagent HyperNEAT is tested in a real-world military patrolling application with actual Khepera III robots. The ultimate goal is to provide a new perspective on multiagent learning and to demonstrate the practical benefits of training heterogeneous, scalable multiagent teams through generative encoding.
Show less - Date Issued
- 2011
- Identifier
- CFE0003661, ucf:48812
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003661