Current Search: mycobacteria (x)
View All Items
- Title
- SURVIVAL OF MYCOBACTERIUM AVIUM SUBSPECIES PARATUBERCULOSIS IN THE POLYMORPHONUCLEAR LEUKOCYTES OF A CROHN'S DISEASE PATIENT.
- Creator
-
Rumsey, John, Naser, Saleh, University of Central Florida
- Abstract / Description
-
Mycobacterium avium subspecies paratuberculosis (map) is an intracellular pathogen that is known to parasitize macrophages and monocytes. Map infiltrates gastrointestinal tract host tissue where it is the known etiological agent of johne's disease in ruminants and implicated in the etiology of crohn's disease in humans. Map's ability to survive within macrophages enables it to disseminate throughout the rest of the host, possibly infecting other circulating blood leukocytes. In this study,...
Show moreMycobacterium avium subspecies paratuberculosis (map) is an intracellular pathogen that is known to parasitize macrophages and monocytes. Map infiltrates gastrointestinal tract host tissue where it is the known etiological agent of johne's disease in ruminants and implicated in the etiology of crohn's disease in humans. Map's ability to survive within macrophages enables it to disseminate throughout the rest of the host, possibly infecting other circulating blood leukocytes. In this study, the survival and fate of map strain atcc 43015 (human isolate) following phagocytosis was determined using in vitro murine macrophage cell line j774a.1 and polymorphonuclear cells (pmnc's) from five crohn's disease patients. Pmnc's from three healthy individuals and two ulcerative colitis patients, as well as escherichia coli (atcc 11303) and mycobacterium tuberculosis strain h37ra (atcc 25177), were included as controls (moi 10:1). Maturation of the phagosome was determined by evaluating the presence of stage specific markers on the surface of the phagosomal membrane. The endosomal protein, transferrin receptor, and the lysosomal marker, lamp-1, were then immunostained with cy-5 conjugated secondary antibodies, and colocalization of bacteria with each marker was evaluated separately using confocal scanning laser microscopy (cslm). In both tissue models, colocalization of viable map and m. Tuberculosis with the early endosomal marker, transferrin receptor occurred with an estimated five fold higher frequency than did association with the late lysosomal marker, lamp-1, as compared to live e. Coli, and all dead bacterial species. Using differential live/dead staining and fluorescent microscopy, survival of m. Tuberculosis and map was estimated at 85% and 79%, respectively compared to only 14% for e. Coli. The outcome was similar for both tissue culture and pmncs from all patients tested, suggesting that map and m. Tuberculosis can survive readily in both cell types, and regardless of the disease state of the host or the killing power of the cell. Map's survival appears to mimic m. Tuberculosis', suggesting the ability to resist phagolysosome fusion, by maintaining association with the early endosomes. Overall, the data confirms map virulence in host human blood leukocytes.
Show less - Date Issued
- 2004
- Identifier
- CFE0000184, ucf:52838
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000184
- Title
- VALIDATING DRUG TARGETS THROUGH INHIBITION OF PROTEIN-PROTEIN INTERACTIONS IN MYCOBACTERIUM TUBERCULOSIS.
- Creator
-
Driscoll, Erin C, Rohde, Kyle, University of Central Florida
- Abstract / Description
-
Tuberculosis is the leading cause of death by single infectious disease worldwide; novel antibiotics are needed to continue to treat this disease. To goal of this project is to provide proof-of-principle support for the idea that targeting protein-protein interactions (PPI) is an appropriate course for the discovery of new drugs. This study optimized the M-PFC assay, which allows detection of PPI in Mycobacteria, through the use of stronger promoters and inducible expression of a peptide...
Show moreTuberculosis is the leading cause of death by single infectious disease worldwide; novel antibiotics are needed to continue to treat this disease. To goal of this project is to provide proof-of-principle support for the idea that targeting protein-protein interactions (PPI) is an appropriate course for the discovery of new drugs. This study optimized the M-PFC assay, which allows detection of PPI in Mycobacteria, through the use of stronger promoters and inducible expression of a peptide blocker by riboswitch. To accomplish this, promoter induction studies were used to find stronger promoters for the M-PFC, optimization of the riboswitch as a method for inducible protein expression within this system, and the addition of both elements to the existing version of the M-PFC. This M-PFC targets DosR homodimerization; this process is known to be essential for survival within the host. This study optimizes a system that may be used to screen for drugs that are capable of interrupting this interaction.
Show less - Date Issued
- 2017
- Identifier
- CFH2000190, ucf:46030
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000190
- Title
- CORRELATION OF RPOB GENE MUTATION WITH CLINICAL RIFABUTIN AND RIFAMPICIN RESISTANCE FOR TREATMENT OF CROHN'S DISEASE.
- Creator
-
Beckler, Daniel, Naser, Saleh, University of Central Florida
- Abstract / Description
-
Emerging rise in microbial drug resistance and the slow-growing characteristic of some intracellular pathogens such as MAP (Mycobacterium avium subspecies paratuberculosis) strongly urges the need for an effective approach for unconventional drug susceptibility testing. We designed a molecular-based PCR method for the evaluation of rifabutin (RFB) and rifampicin (RIF) resistance based on probable determinant regions within the rpoB gene of MAP, including the 81 bp variable site located...
Show moreEmerging rise in microbial drug resistance and the slow-growing characteristic of some intracellular pathogens such as MAP (Mycobacterium avium subspecies paratuberculosis) strongly urges the need for an effective approach for unconventional drug susceptibility testing. We designed a molecular-based PCR method for the evaluation of rifabutin (RFB) and rifampicin (RIF) resistance based on probable determinant regions within the rpoB gene of MAP, including the 81 bp variable site located between nucleotides 1363 and 1443. The minimum inhibitory concentration (MIC) for RIF was also determined against 10 MAP isolates in attempt to seek correlation with rpoB sequences. We determined that MAP strain 18 had an MIC > 30 ug/ml and > 5 ug/ml for RIF and RFB respectively, and a significant rpoB mutation C1367T, compared to an MIC of < 1.0 ug/ml for both drugs in the wild type MAP. The 30-fold increase in the MIC was a direct result of the rpoB mutation C1367T, which caused an amino acid change Thr456 to Ile456 in the drug's binding site; the beta subunit of RNA polymerase. Our in vitro induced mutation in MAP strain UCF5 resulted in the generation of a new resistant strain (UCF5-RIF16r) that possessed T1442C rpoB mutation and an MIC > 30 ug/ml and > 10 ug/ml for RIF and RFB respectively. The T1442C mutation resulted in a Leu481 to Pro481 amino acid change, consequently altering the beta subunit sequence. Sequencing the entire 3.5 kb rpoB in strains 18 and UCF5-RIF16r revealed no additional expressed nucleotide mutation. Of the 10 MAP strains analyzed, an additional one strain (UCF4) exhibited a slight increase in the MIC against RIF and RFB compared to the wild-type. Nucleotide sequencing of the rpoB gene revealed an A2284C mutation in strain UCF4 that occurred further downstream of the expected probable rpoB region and resulted in an amino acid alteration Asn762 to His762. The location of this mutation outside the binding site and its correlation with the minor increase in MIC suggests a possible secondary interaction between the drug and the beta subunit. We have provided three dimensional images through the utilization of PyMol Molecular-based Graphics to display a clear comparison of the mutations observed in the beta subunit for MAP strains 18, UCF5-RIF16r, and UCF4. We propose that these alterations may have caused a less stable interaction between RIF and the beta subunit, resulting in the observed increased in MIC. Furthermore, the change in amino acid sequence did not affect the viability for our RIF resistant strains. The data clearly illustrates that clinical and in vitro-induced MAP mutants with rpoB mutations result in resistance to RIF and RFB. Consequently, unconventional drug susceptibility testing such as our molecular approach will be beneficial for evaluation of antibiotic effectiveness. This molecular approach may also serve as a model for other drugs used for treatment of MAP infections.
Show less - Date Issued
- 2007
- Identifier
- CFE0001729, ucf:47310
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001729
- Title
- DEVELOPMENT OF LUMINESCENT TOOLS FOR USE IN THE STUDY OF MYCOBACTERIUM TUBERCULOSIS.
- Creator
-
Moore, Krista A, Rohde, Kyle, University of Central Florida
- Abstract / Description
-
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is a growing problem worldwide due to the emergence of multi-drug resistant and extensively-drug resistant strains of the bacteria. A key to combatting the spread of these strains lies in the understanding of gene expression occurring in Mtb. This study focuses on the development and optimization of a luciferase-based bioluminescent transcriptional reporter that can be used to monitor gene expression in Mtb. The...
Show moreMycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is a growing problem worldwide due to the emergence of multi-drug resistant and extensively-drug resistant strains of the bacteria. A key to combatting the spread of these strains lies in the understanding of gene expression occurring in Mtb. This study focuses on the development and optimization of a luciferase-based bioluminescent transcriptional reporter that can be used to monitor gene expression in Mtb. The luminescent signal emitted from the reporter can be measured and correlated with the level of transcription of certain genes. This study focuses specifically on a gene called whiB7 which encodes a transcription factor known to contribute to the drug resistance of Mtb. The drug-inducible whiB7 promoter was cloned into various locations in the luciferase plasmid in order to determine the ideal configuration of the reporter for maximum luminescence. The optimized luciferase reporter was then compared with a fluorescent transcriptional reporter, mCherry, also under control of the whiB7 promoter. Fluorescent reporters present some disadvantages including delayed kinetics and inability to accurately reflect gene downregulation due to long half-life of reporter proteins. It was hypothesized that the luciferase reporter would solve these problems by offering a more sensitive and dynamic tool to monitor gene expression. Quantitative real-time PCR was used to measure whiB7 mRNA present in cultures containing either the luciferase or mCherry reporters. The luminescent and fluorescent signal given from these reporters was then compared to actual mRNA expression. It was observed that the signal from the luciferase reporter more closely matched mRNA expression at each timepoint, indicating that the luciferase reporter is a better gauge of actual gene expression levels than the mCherry reporter.
Show less - Date Issued
- 2019
- Identifier
- CFH2000478, ucf:45912
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000478
- Title
- Malondialdehyde (MDA) and Glutathione Peroxidase (GPx) are elevated in Crohns disease-associated with Mycobacterium avium subspecies paratuberculosis (MAP).
- Creator
-
Qasem, Ahmad, Naser, Saleh, Masternak, Michal, Parthasarathy, Sampath, Andl, Claudia, University of Central Florida
- Abstract / Description
-
Inflamed tissue in Crohn's disease (CD) are continuously producing toxic oxygen metabolites leading to cellular injury and apoptosis. Here, we are evaluating the role of Mycobacterium avium subspecies paratuberculosis (MAP) in oxidative stress in CD by evaluation of lipid peroxidation and antioxidant defense activity. Specifically, we measured malondialdehyde (MDA) level and selenium-dependent glutathione peroxidase (GPx) activity in the plasma from patients and cattle infected with MAP. The...
Show moreInflamed tissue in Crohn's disease (CD) are continuously producing toxic oxygen metabolites leading to cellular injury and apoptosis. Here, we are evaluating the role of Mycobacterium avium subspecies paratuberculosis (MAP) in oxidative stress in CD by evaluation of lipid peroxidation and antioxidant defense activity. Specifically, we measured malondialdehyde (MDA) level and selenium-dependent glutathione peroxidase (GPx) activity in the plasma from patients and cattle infected with MAP. The level of MAP antibodies in bovine sera was determined by IDEXX kit whereas detection of MAP DNA was performed by IS900-based nPCR. A total of 42 cattle (21 infected with MAP and 21 healthy controls), 27 CD subjects, 27 of CD-healthy relatives, 66 subjects with various diseases and 34 non-related healthy subjects were investigated. Overall, GPx activity was significantly higher in MAP infected humans (0.80941(&)#177;0.521) versus MAP (-ve) samples (0.42367(&)#177;0.229 units/ml), P(<)0.01. Similarly, the average of GPx activity in cattle infected with MAP was 1.59(&)#177;0.65 units/ml compared to 0.46907(&)#177;0.28 units/ml in healthy cattle (P(<)0.01). Although it was not statistically significant, MDA average level was higher in MAP infected human samples versus MAP (-ve) controls (1.11(&)#177;0.185 nmol/ml versus 0.805(&)#177;0.151 nmol/ml, respectively). Similarly, MDA average level in CD samples that are MAP+ (1.703(&)#177;0.231 nmol/ml) was higher than CD samples that are MAP (-ve) (1.429(&)#177;0.187 nmol/ml). In cattle, MDA average level in MAP infected samples was significantly higher at 3.818(&)#177;0.45 nmol/ml compared to 0.538(&)#177;0.18 nmol/ml in healthy cattle (P(<)0.01). Clearly, the data demonstrated that MAP infection is associated with oxidative stress and resulting in the pathophysiology of worsening of the condition of CD patients.
Show less - Date Issued
- 2016
- Identifier
- CFE0006699, ucf:51906
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006699
- Title
- Development of Molecular Diagnostic Tools for Mycobacterium Species.
- Creator
-
Bengtson, Hillary, Kolpashchikov, Dmitry, Rohde, Kyle, Self, William, Jewett, Travis, Masternak, Michal, University of Central Florida
- Abstract / Description
-
This dissertation focuses on the development of diagnostic tools for mycobacteria using hybridization based technologies including binary deoxyribozyme (BiDz) sensors and microarrays. The genus Mycobacterium, is a diverse group of bacteria containing 150+ species including M. tuberculosis (M.tb) and non-tuberculous mycobacteria (NTM) which exhibit a range of pathogenicity, drug susceptibility and growth characteristics. M. tuberculosis (M.tb) is the causative agent of tuberculosis (TB) and...
Show moreThis dissertation focuses on the development of diagnostic tools for mycobacteria using hybridization based technologies including binary deoxyribozyme (BiDz) sensors and microarrays. The genus Mycobacterium, is a diverse group of bacteria containing 150+ species including M. tuberculosis (M.tb) and non-tuberculous mycobacteria (NTM) which exhibit a range of pathogenicity, drug susceptibility and growth characteristics. M. tuberculosis (M.tb) is the causative agent of tuberculosis (TB) and the leading cause of infectious disease related deaths worldwide. The control of TB is limited by the lack of sensitive and specific diagnostic tools available at the point of care (POC). The studies presented here illustrate the advances in our technology for the detection and differentiation of M.tb and NTM. The use of BiDz sensors enables the selective recognition of DNA/RNA analytes containing single nucleotide polymorphisms associated with species-specific identification, drug susceptibility testing (DST) and strain typing. First, we developed a platform for the detection of M.tb and drug susceptibility using multiplex PCR and BiDz sensors. However, this method relies on the use of expensive instrumentation which is often not available in high TB burden countries. Therefore, additional studies focused on the development of tools for the detection of isothermal amplification products and the direct detection of rRNA. Based on these findings, we also developed an NTM species typing tool using BiDz sensors for species identification in ~1 hour. Despite the advantages of BiDz sensor technology, their use is limited to the detection of a few selected mutations. To address this limitation, we developed a 15-loci multiplex PCR followed by analysis with a custom microarray for high-throughput identification of SNPs. The work presented in this dissertation has the potential to enable the rapid, specific and sensitive identification of mycobacterial species necessary to reduce the diagnostic delay, ensure initiation of effective therapy, and prevent further transmission.
Show less - Date Issued
- 2017
- Identifier
- CFE0006856, ucf:51735
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006856
- Title
- Role of Single Nucleotide Polymorphisms (SNPs) in PTPN2/22 and Mycobacterium avium subspecies paratuberculosis (MAP) in Rheumatoid Arthritis and Crohn's Disease.
- Creator
-
Sharp, Robert, Naser, Saleh, Parks, Griffith, Roy, Herve, Singla, Dinender, University of Central Florida
- Abstract / Description
-
Both genetic pre-disposition and potential environmental triggers are shared between Rheumatoid arthritis (RA) and Crohn's disease (CD). We hypothesized that single nucleotide polymorphisms (SNPs) in the negative T-cell regulators Protein Tyrosine Phosphatase Non-receptor type 2 and 22 (PTPN2/22) lead to a dysregulated immune response as seen in RA and CD. To test the hypothesis, peripheral leukocytes samples from 204 consented subjects were TaqMan genotyped for 9 SNPs in PTPN2/22. The SNPs...
Show moreBoth genetic pre-disposition and potential environmental triggers are shared between Rheumatoid arthritis (RA) and Crohn's disease (CD). We hypothesized that single nucleotide polymorphisms (SNPs) in the negative T-cell regulators Protein Tyrosine Phosphatase Non-receptor type 2 and 22 (PTPN2/22) lead to a dysregulated immune response as seen in RA and CD. To test the hypothesis, peripheral leukocytes samples from 204 consented subjects were TaqMan genotyped for 9 SNPs in PTPN2/22. The SNPs effect on PTPN2/22 and IFN-y expression was determined using RT-PCR. Blood samples were analyzed for the Mycobacterium avium subspecies paratuberculosis (MAP) IS900 gene by nPCR. T-cell proliferation and response to phytohematoagglutonin (PHA) mitogen and MAP cell lysate were determined by BrdU proliferation assay. Out of 9 SNPs, SNP alleles of PTPN2:rs478582 occurred in 79% RA compared to 60% control (p-values ? 0.05). SNP alleles of PTPN22:rs2476601 occurred in 29% RA compared to 6% control (p-values ? 0.05). For the haplotype combination of PTPN2:rs478582/PTPN22rs2476601, 21.4% RA had both SNPs (C-A) compared to 2.4% control (p-values ? 0.05). PTPN2/22 expression in RA was decreased by an average of 1.2 fold. PTPN2:rs478582 upregulated IFN-y in RA by an average of 1.5 fold. Combined PTPN2:rs478582/PTPN22:rs2476601 increased T-cell proliferation by an average of 2.7 fold when treated with PHA. MAP DNA was detected in 34% RA compared to 8% controls (p-values ? 0.05), where samples with PTPN2:rs478582 and/or PTPN22:rs2476601 were more MAP positive. PTPN2:rs478582/PTPN22:rs2476601 together with MAP infection significantly increased T-cell response and IFN-y expression in RA samples. The same experimental approach was followed on blood samples from CD patients. Both PTPN2:rs478582/PTPN22:rs2476601 affected PTPN2/22 and IFN-y expression along with T-cell proliferation significantly more than in RA. MAP DNA was detected in 64% of CD. This is the first study to report the correlation between SNPs in PTPN2/22, IFN-y expression and MAP in autoimmune disease.
Show less - Date Issued
- 2018
- Identifier
- CFE0007371, ucf:52094
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007371