Current Search: neurogenesis (x)
View All Items
- Title
- IDENTIFICATION OF THE EFFECTS OF DIABETES MELLITUS ON THE BRAIN.
- Creator
-
Mikhail, Tryphina A, Samsam, Mohtashem, University of Central Florida
- Abstract / Description
-
As more studies accumulate on the impact of diabetes mellitus on the central nervous system, they resound with the same conclusion - diabetes has a detrimental effect on cognition regardless of the presence of comorbidities. Less consistent however, are the specific mental processes wherein these declines are noticeable, and the structural changes that accompany these reductions in mental capacity. From global atrophy to changes in the volume of gray and white matter, to conflicting results...
Show moreAs more studies accumulate on the impact of diabetes mellitus on the central nervous system, they resound with the same conclusion - diabetes has a detrimental effect on cognition regardless of the presence of comorbidities. Less consistent however, are the specific mental processes wherein these declines are noticeable, and the structural changes that accompany these reductions in mental capacity. From global atrophy to changes in the volume of gray and white matter, to conflicting results regarding the effects of hypo- and hyperglycemic states on the development of the hippocampus, the studies display a variety of results. The goal of this research is to link the structural and compositional changes occurring in the diabetic brain with the clinical and behavioral findings highlighted in the literature, as well as to explore the potential mechanisms behind the pathologic brain state of diabetic encephalopathy. Using diabetic (OVE26) and non-diabetic wild type (FVB) mice as models, differences in the number of hippocampal neurons in the dentate gyrus, and cornu ammonis areas 1,2, and 3 were investigated through Nissl staining. Neurodegeneration was confirmed in those cells determined to be hyperchromatic in the diabetic model through staining with Fluoro-Jade C. Finally, the presence of progenitor cells in the hippocampus was compared in the diabetic and non-diabetic models using Musashi-1 antibodies, to determine whether neurogenesis in these areas is affected by diabetes. These experiments were performed to better understand the effect of DM on learning and memory, and could potentially explain the linkage between diabetes mellitus and the increased prevalence of Alzheimer�s disease, vascular dementia, and depression in this subset of the population.
Show less - Date Issued
- 2016
- Identifier
- CFH2000021, ucf:45601
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000021
- Title
- REELIN SIGNALING PROMOTES RADIAL GLIA MATURATION AND NEUROGENESIS.
- Creator
-
Keilani, Serene, Sugaya, Kiminobu, University of Central Florida
- Abstract / Description
-
The end of neurogenesis in the human brain is marked by the transformation of the neural progenitors, the radial glial cells, into astrocytes. This event coincides with the reduction of Reelin expression, a glycoprotein that regulates neuronal migration in the cerebral cortex and cerebellum. A recent study showed that the dentate gyrus of the adult reeler mice, with homozygous mutation in the RELIN gene, have reduced neurogenesis relative to the wild type. Based on the above findings, our...
Show moreThe end of neurogenesis in the human brain is marked by the transformation of the neural progenitors, the radial glial cells, into astrocytes. This event coincides with the reduction of Reelin expression, a glycoprotein that regulates neuronal migration in the cerebral cortex and cerebellum. A recent study showed that the dentate gyrus of the adult reeler mice, with homozygous mutation in the RELIN gene, have reduced neurogenesis relative to the wild type. Based on the above findings, our first hypothesis states that Reelin expression is important for the formation of radial glia and the generation of neurons from the neural progenitors. In order to investigate the role of Reelin in the process of cortical neurogenesis during development, we used human neural progenitor cells (hNPCs) that were isolated from a fetal cortex. These cells do not express Reelin. In this study, we show that Reelin addition to these hNPCs in vitro induced the formation of radial glia and increased neurogenesis significantly. Next, we investigated the mechanism by which Reelin increases the formation of radial glia and the generation of neurons. The formation of radial glia is under the control of two pathways, these are the Reelin and the Notch-1 signaling pathways. Since the level of Notch-1 activation determines if a cell would become a radial glia or an astrocyte, and since the absence of Reelin allows the transformation of a radial glia into astrocyte, we hypothesized that Reelin induces the formation of radial glia via activating Notch-1 signaling. To test this hypothesis, we investigated the effect of Reelin addition on Notch-1 activation in hNPCs. We found that Reelin addition in vitro activated Notch-1 signaling by increasing the level of Notch-1 intracellular domain (NICD). On the other hand, reducing NICD release, by inhibiting gamma-secretase activity, inhibited the Reelin-induced radial glia, confirming that Reelin's effect on the formation of radial glia is dependent on Notch-1 activation. Furthermore, we found that the Reelin-induced tyrosine phosphorylation of Disabled-1 (Dab-1), an adaptor protein downstream of Reelin, and the subsequent activation of Src family kinases, are essential steps for Notch-1 activation by Reelin. Finally, we found that Reelin addition increased the binding of Dab-1, recently identified as a nucleoshuttling protein, to NICD and enhanced NICD translocation to the nucleus. This resulted in the induction of BLBP expression and the subsequent formation of radial glia. Taken together, these data show that Reelin signaling, mediated by Dab-1 and Src kinase, activates Notch-1 signaling in hNPCs resulting in the induction of BLBP expression, the formation of radial glia and the generation of neurons. This work is novel because it provides that first evidence that Reelin expression is an important signal for the neuronal differentiation of the hNPCs. It also shows the crosstalk between Reelin and Notch-1 signaling, two major pathways in development and cell fate determination. The work is significant because it improves our understanding of the role of Reelin signaling in cell fate determination, differentiation and neurogenesis for the future manipulation of these processes to restore adult brain functions after brain injury or in neurodegenerative diseases.
Show less - Date Issued
- 2009
- Identifier
- CFE0002574, ucf:48258
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002574