Current Search: organic molecules (x)
View All Items
- Title
- MOLECULAR STRUCTURE NONLINEAR OPTICAL PROPERTY RELATIONSHIPS FOR A SERIES OF POLYMETHINE AND SQUARAINE MOLECULES.
- Creator
-
Fu, Jie, Van Stryland, Eric, University of Central Florida
- Abstract / Description
-
This dissertation reports on the investigation of the relationships between molecular structure and two-photon absorption (2PA) properties for a series of polymethine and squaraine molecules. Current and emerging applications exploiting the quadratic dependence upon laser intensity, such as two-photon fluorescence imaging, three-dimensional microfabrication, optical data storage and optical limiting, have motivated researchers to find novel materials exhibiting strong 2PA. Organic materials...
Show moreThis dissertation reports on the investigation of the relationships between molecular structure and two-photon absorption (2PA) properties for a series of polymethine and squaraine molecules. Current and emerging applications exploiting the quadratic dependence upon laser intensity, such as two-photon fluorescence imaging, three-dimensional microfabrication, optical data storage and optical limiting, have motivated researchers to find novel materials exhibiting strong 2PA. Organic materials are promising candidates because their linear and nonlinear optical properties can be optimized for applications by changing their structures through molecular engineering. Polymethine and squaraine dyes are particularly interesting because they are fluorescent and showing large 2PA. We used three independent nonlinear spectroscopic techniques (Z-scan, two-photon fluorescence and white-light continuum pump-probe spectroscopy) to obtain the 2PA spectra revealing 2PA bands, and we confirm the experimental data by comparing the results from the different methods mentioned. By systematically altering the structure of polyemthines and squaraines, we studied the effects of molecular symmetry, strength of donor terminal groups, conjugation length of the chromophore chain, polarity of solvents, and the effects of placing bridge molecules inside the chromophore chain on the 2PA properties. We also compared polymethine, squaraine, croconium and tetraon dyes with the same terminal groups to study the effects of the different additions inserted within the chromophore chain on their optical properties. Near IR absorbing squaraine dyes were experimentally observed to show extremely large 2PA cross sections ( 30000GM). A simplified three-level model was used to fit the measured 2PA spectra and detailed quantum chemical calculations revealed the reasons for the squaraine to exhibit strong 2PA. In addition, two-photon excitation fluorescence anisotropy spectra were measured through multiple 2PA transitions. A theoretical model based on four-levels with two intermediate states was derived and used for analysis of the experimental data.
Show less - Date Issued
- 2006
- Identifier
- CFE0001350, ucf:46967
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001350
- Title
- CHEMICAL STRUCTURE - NONLINEAR OPTICAL PROPERTY RELATIONSHIPS FOR A SERIES OF TWO-PHOTON ABSORBING FLUORENE MOLECULES.
- Creator
-
Hales, Joel McCajah, Van Stryland, Eric W., University of Central Florida
- Abstract / Description
-
This dissertation reports on the investigation of two-photon absorption (2PA) in a series of fluorenyl molecules. Several current and emerging technologies exploit this optical nonlinearity including two-photon fluorescence imaging, three-dimensional microfabrication, site-specific photodynamic cancer therapy and biological caging studies. The two key features of this nonlinearity which make it an ideal candidate for the above applications are its quadratic dependence on the incident...
Show moreThis dissertation reports on the investigation of two-photon absorption (2PA) in a series of fluorenyl molecules. Several current and emerging technologies exploit this optical nonlinearity including two-photon fluorescence imaging, three-dimensional microfabrication, site-specific photodynamic cancer therapy and biological caging studies. The two key features of this nonlinearity which make it an ideal candidate for the above applications are its quadratic dependence on the incident irradiance and the improved penetration into absorbing media that it affords. As a consequence of the burgeoning field which exploits 2PA, it is a goal to find materials that exhibit strong two-photon absorbing capabilities. Organic materials are promising candidates for 2PA applications because their material properties can be tailored through molecular engineering thereby facilitating optimization of their nonlinear optical properties. Fluorene derivatives are particularly interesting since they possess high photochemical stability for organic molecules and are generally strongly fluorescent. By systematically altering the structural properties in a series of fluorenyl molecules, we have determined how these changes affect their two-photon absorbing capabilities. This was accomplished through characterization of both the strength and location of their 2PA spectra. In order to ensure the validity of these results, three separate nonlinear characterization techniques were employed: two-photon fluorescence spectroscopy, white-light continuum pump-probe spectroscopy, and the Z-scan technique. In addition, full linear spectroscopic characterization was performed on these molecules along with supplementary quantum chemical calculations to obtain certain molecular properties that might impact the nonlinearity. Different designs in chemical architecture allowed investigation of the effects of symmetry, solvism, donor-acceptor strengths, conjugation length, and multi-branched geometries on the two-photon absorbing properties of these molecules. In addition, the means to enhance 2PA via intermediate state resonances was investigated. To provide plausible explanations for the experimentally observed trends, a conceptually simple three level model was employed. The subsequent correlations found between chemical structure and the linear and nonlinear optical properties of these molecules provided definitive conclusions on how to properly optimize their two-photon absorbing capabilities. The resulting large nonlinearities found in these molecules have already shown promise in a variety of the aforementioned applications.
Show less - Date Issued
- 2004
- Identifier
- CFE0000005, ucf:46103
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000005
- Title
- A Theoretical Investigation of Small Organic Molecules on Transition Metal Surfaces.
- Creator
-
Malone, Walter, Kara, Abdelkader, Stolbov, Sergey, Kaden, William, Thomas, Jayan, University of Central Florida
- Abstract / Description
-
With the ever growing number of proposed desnity functional theory (DFT) functionals it becomes necessary to thoroughly screen any new method to determine its merit. Especially relevant methods include a proper description of the van der Waals (vdW) interaction, which can prove vital to a correct description of a myriad of systems of technological importance. The first part of this dissertation explores the utility of several vdW-inclusive DFT functionals including optB86b-vdW, optB88-vdW,...
Show moreWith the ever growing number of proposed desnity functional theory (DFT) functionals it becomes necessary to thoroughly screen any new method to determine its merit. Especially relevant methods include a proper description of the van der Waals (vdW) interaction, which can prove vital to a correct description of a myriad of systems of technological importance. The first part of this dissertation explores the utility of several vdW-inclusive DFT functionals including optB86b-vdW, optB88-vdW, optPBE-vdW, revPBE-vdW, rPW86-vdW2, and SCAN+rVV10 by applying them to model systems of small organic molecules, pyridine and thiophene, on transition metal surfaces. Overall, we find the optB88-vdW functional gives the best, most balanced description of both thiophene and pyridine on transition metal surfaces while revPBE-vdW, rPW86-vdW2, and SCAN+rVV10 functionals perform especially poorly for these systems. In the second part of this dissertation we change our focus to potential applications of DFT. Specifically, we study the hydrodesulfurization (HDS) process and molecules that could be used in molecular electronics. The removal of sulfur containing molecules from petrochemicals through HDS is an exceptionally important process economically, and the field of molecular electronics is rapidly developing with hopes of competing with and replacing their silicon analogues. First we investigate the hydrodesulfurization of thiophene. In this dissertation we manage to map the HDS rate of thiophene in realistic reaction conditions to the charge transfer and adsorption energy of thiophene on bare transition metal surfaces in hopes of predicting ever more active HDS catalysis. Finally we look at the adsorption of polythiophenes and 5,14-dihydro-5,7,12,14-tetraazapentacene (DHTAP) on Au(111) and Cu(110). We find that polythiophenes may dissociate of Au(111), presenting an issue for their use in molecular electronics. DHTAP, in contrast, proves to a suitable candidate for use practical devices.
Show less - Date Issued
- 2019
- Identifier
- CFE0007494, ucf:52653
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007494
- Title
- A theoretical and experimental investigation of the physical and chemical properties of solid nanoscale interfaces.
- Creator
-
Matos, Jeronimo, Kara, Abdelkader, Heinrich, Helge, Schelling, Patrick, Masunov, Artem, University of Central Florida
- Abstract / Description
-
With the emerging interest in nanoscale materials, the fascinating field of surface science is rapidly growing and presenting challenges to the design of both experimental and theoretical studies. The primary aim of this dissertation is to shed some light on the physical and chemical properties of selected nanoscale materials at the interface. Furthermore, we will discuss the effective application of cutting edge theoretical and experimental techniques that are invaluable tools for...
Show moreWith the emerging interest in nanoscale materials, the fascinating field of surface science is rapidly growing and presenting challenges to the design of both experimental and theoretical studies. The primary aim of this dissertation is to shed some light on the physical and chemical properties of selected nanoscale materials at the interface. Furthermore, we will discuss the effective application of cutting edge theoretical and experimental techniques that are invaluable tools for understanding the systems at hand. To this effect, we use density functional theory (DFT) with the inclusion of van der Waals (vdW) interactions to study the effect of long-range interactions on the adsorption characteristics of various organic molecules (i.e. benzene, olympicene radical, and sexithiophene) on transition metal surfaces. Secondly, the detailed analysis of x-ray absorption spectroscopy (XAS), scanning transmission electron microscopy (STEM), x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) measurements will be presented. These investigations will be dedicated to the study of (i) the effect of pre-treatment on the coarsening behavior of Pt nanoparticles (NPs) supported on ?-Al2O3 and (ii) deconvoluting the intrinsic (size effects) and extrinsic (ligand effects) physical and electronic properties of Au NPs encapsulated by polystyrene 2-vinylpiridine ligands.
Show less - Date Issued
- 2015
- Identifier
- CFE0005975, ucf:50783
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005975