Current Search: polarimetry (x)
View All Items
- Title
- POLARIMETRY OF RANDOM FIELDS.
- Creator
-
Ellis, Jeremy, Dogariu, Aristide, University of Central Florida
- Abstract / Description
-
On temporal, spatial and spectral scales which are small enough, all fields are fully polarized. In the optical regime, however, instantaneous fields can rarely be examined, and, instead, only average quantities are accessible. The study of polarimetry is concerned with both the description of electromagnetic fields and the characterization of media a field has interacted with. The polarimetric information is conventionally presented in terms of second order field correlations which are...
Show moreOn temporal, spatial and spectral scales which are small enough, all fields are fully polarized. In the optical regime, however, instantaneous fields can rarely be examined, and, instead, only average quantities are accessible. The study of polarimetry is concerned with both the description of electromagnetic fields and the characterization of media a field has interacted with. The polarimetric information is conventionally presented in terms of second order field correlations which are averaged over the ensemble of field realizations. Motivated by the deficiencies of classical polarimetry in dealing with specific practical situations, this dissertation expands the traditional polarimetric approaches to include higher order field correlations and the description of fields fluctuating in three dimensions. In relation to characterization of depolarizing media, a number of fourth-order correlations are introduced in this dissertation. Measurements of full polarization distributions, and the subsequent evaluation of Stokes vector element correlations and Complex Degree of Mutual Polarization demonstrate the use of these quantities for material discrimination and characterization. Recent advancements in detection capabilities allow access to fields near their sources and close to material boundaries, where a unique direction of propagation is not evident. Similarly, there exist classical situations such as overlapping beams, focusing, or diffusive scattering in which there is no unique transverse direction. In this dissertation, the correlation matrix formalism is expanded to describe three dimensional electromagnetic fields, providing a definition for the degree of polarization of such a field. It is also shown that, because of the dimensionality of the problem, a second parameter is necessary to fully describe the polarimetric properties of three dimensional fields. Measurements of second-order correlations of a three dimensional field are demonstrated, allowing the determination of both the degree of polarization and the state of polarization. These new theoretical concepts and innovative experimental approaches introduced in thiss dissertation are expected to impact scientific areas as diverse as near field optics, remote sensing, high energy laser physics, fluorescence microscopy, and imaging.
Show less - Date Issued
- 2006
- Identifier
- CFE0000982, ucf:46697
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000982
- Title
- Random Transformations of Optical Fields and Applications.
- Creator
-
Kohlgraf-Owens, Thomas, Dogariu, Aristide, Saleh, Bahaa, Schulzgen, Axel, Tamasan, Alexandru, University of Central Florida
- Abstract / Description
-
The interaction of optical waves with material systems often results in complex, seemingly random fields. In many cases, the interaction, while complicated, is both linear and deterministic.This dissertation focuses on the possible inverse problems associated with the determination of either the excitation field or the scattering system. The scattered field can be thought of as a massive sampling and mixing of the excitation field. This dissertation will show how such complicated sampling...
Show moreThe interaction of optical waves with material systems often results in complex, seemingly random fields. In many cases, the interaction, while complicated, is both linear and deterministic.This dissertation focuses on the possible inverse problems associated with the determination of either the excitation field or the scattering system. The scattered field can be thought of as a massive sampling and mixing of the excitation field. This dissertation will show how such complicated sampling functions can be characterized and how the corresponding scattering medium can then be used as an optical device such as a lens, polarimeter, or spectrometer.Another class of inverse problems deals with extracting information about the material system from changes in the scattered field. This dissertation includes a novel technique, based on dynamic light scattering, that allows for a full polarimetric measurement of the scattered light using a reference field with controllable polarization. Another technique relates to imaging the reflectivity of a target that is being randomly illuminated. We demonstrate that a method based on the correlation between the integrated scattered intensity and the corresponding illumination intensity distribution can prove superior to standard imaging microscopy at low-light levels.
Show less - Date Issued
- 2012
- Identifier
- CFE0004786, ucf:49746
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004786
- Title
- POLARIMETRIC CHARACTERIZATION OF RANDOM ELECTROMAGNETIC BEAMS AND APPLICATIONS.
- Creator
-
Mujat, Mircea, Dogariu, Aristide, University of Central Florida
- Abstract / Description
-
The polarimetric properties of random electromagnetic beams provide new means for characterizing random media. A novel interferometric technique is introduced for controlling the polarimetric, spectral, and coherence characteristics of random electromagnetic beams. Several new techniques are presented for measuring the state of polarization and the polarization transfer through scattering media. The polarimetric signatures of different particulate systems are related to their structural...
Show moreThe polarimetric properties of random electromagnetic beams provide new means for characterizing random media. A novel interferometric technique is introduced for controlling the polarimetric, spectral, and coherence characteristics of random electromagnetic beams. Several new techniques are presented for measuring the state of polarization and the polarization transfer through scattering media. The polarimetric signatures of different particulate systems are related to their structural properties and to the size distribution, shape, orientation, birefringent or dichroic properties of the particles. Various scattering regimes and different geometries are discussed for applications relevant to the bio-medical field, material science, and remote sensing.
Show less - Date Issued
- 2004
- Identifier
- CFE0000049, ucf:46132
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000049
- Title
- SIMULATION AND STUDY OF THE STOKES VECTOR IN A PRECIPITATING ATMOSPHERE.
- Creator
-
Adams, Ian, Jones, Linwood, University of Central Florida
- Abstract / Description
-
Precipitation is a dominating quantity in microwave radiometry. The large emission and scattering signals of rain and ice, respectively, introduce large contributions to the measured brightness temperature. While this allows for accurate sensing of precipitation, it also results in degraded performance when retrieving other geophysical parameters, such as near-surface ocean winds. In particular, the retrieval of wind direction requires precise knowledge of polarization, and nonspherical...
Show morePrecipitation is a dominating quantity in microwave radiometry. The large emission and scattering signals of rain and ice, respectively, introduce large contributions to the measured brightness temperature. While this allows for accurate sensing of precipitation, it also results in degraded performance when retrieving other geophysical parameters, such as near-surface ocean winds. In particular, the retrieval of wind direction requires precise knowledge of polarization, and nonspherical particles can result in a change in the polarization of incident radiation. The aim of this dissertation is to investigate the polarizing effects of precipitation in the atmosphere, including the existence of a precipitation signal in the third Stokes parameter, and compare these effects with the current sensitivities of passive wind vector retrieval algorithms. Realistic simulated precipitation profiles give hydrometeor water contents which are input into a vector radiative transfer model. Brightness temperatures are produced within the model using a reverse Monte Carlo method. Results are produced at three frequencies of interest to microwave polarimetry, 10.7 GHz, 18.7 GHz, and 37.0 GHz, for the first 3 components of the Stokes vector.
Show less - Date Issued
- 2007
- Identifier
- CFE0001644, ucf:47246
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001644