Current Search: prefrontal cortex (x)
View All Items
- Title
- EVALUATING COMPETITION BETWEEN VERBAL AND IMPLICIT SYSTEMS WITH FUNCTIONAL NEAR-INFRARED SPECTROSCOPY.
- Creator
-
Schiebel, Troy A, Bohil, Corey, University of Central Florida
- Abstract / Description
-
In category learning, explicit processes function through the prefrontal cortex (PFC) and implicit processes function through the basal ganglia. Research suggested that these two systems compete with each other. The goal of this study was to shed light on this theory. 15 undergraduate subjects took part in an event-related experiment that required them to categorize computer-generated line-stimuli, which varied in length and/or angle depending on condition. Subjects participated in an...
Show moreIn category learning, explicit processes function through the prefrontal cortex (PFC) and implicit processes function through the basal ganglia. Research suggested that these two systems compete with each other. The goal of this study was to shed light on this theory. 15 undergraduate subjects took part in an event-related experiment that required them to categorize computer-generated line-stimuli, which varied in length and/or angle depending on condition. Subjects participated in an explicit "rule-based" (RB) condition and an implicit "information-integration" (II) condition while connected to a functional near-infrared spectroscopy (fNIRS) apparatus, which measured the hemodynamic response (HR) in their PFC. Each condition contained 2 blocks. We hypothesized that the competition between explicit and implicit systems (COVIS) would be demonstrated if, by block 2, task-accuracy was approximately equal across conditions with PFC activity being comparatively higher in the II condition. This would indicate that subjects could learn the categorization task in both conditions but were only able to decipher an explicit rule in the RB condition; their PFC would struggle to do so in the II condition, resulting in perpetually high activation. In accordance with predictions, results revealed no difference in accuracy across conditions with significant difference in channel activation. There were channel trends (p<.1) which showed PFC activation decrease in the RB condition and increase in the II condition by block 2. While these results support our predictions, they are largely nonsignificant, which could be attributed to the event-related design. Future research should utilize a larger samples size for improved statistical power.
Show less - Date Issued
- 2016
- Identifier
- CFH2000086, ucf:45502
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000086
- Title
- PREDICTING COGNITIVE WORKLOAD WITH MEASURES FROM FUNCTIONAL NEAR-INFRARED SPECTROSCOPY (FNIRS) AND HEART RATE.
- Creator
-
Duany, John, Bohil, Corey, University of Central Florida
- Abstract / Description
-
The objective of this study was to assess low to high levels of Cognitive Workload by measuring heart rate and cortical blood flow in real-time. Four conditions were implemented into a within-subjects experimental design. Two conditions of difficulty and two conditions of trial order were used to illicit different levels of workload which will be analyzed with psychophysiological equipment. Functional Near-Infrared Spectroscopy (fNIRS) has become more prominent for measuring the blood...
Show moreThe objective of this study was to assess low to high levels of Cognitive Workload by measuring heart rate and cortical blood flow in real-time. Four conditions were implemented into a within-subjects experimental design. Two conditions of difficulty and two conditions of trial order were used to illicit different levels of workload which will be analyzed with psychophysiological equipment. Functional Near-Infrared Spectroscopy (fNIRS) has become more prominent for measuring the blood oxygenation levels in the prefrontal cortex of individuals operating in hazardous work environments, students with learning disabilities, and in research for military training. This is due to the fNIR device being highly mobile, inexpensive, and able to produce a high-spatial resolution of the dorsolateral prefrontal cortex during executive functioning. Heart Rate will be measured by an Electrocardiogram, which will be used in concordance with fNIR oxygenation levels to predict if an individual is in a condition that produces low or high mental workload. Successfully utilizing heart rate and blood oxygenation data as predictors of cognitive workload may validate implementing multiple physiological devices together in real-time and may be a more accurate solution for preventing excessive workload.
Show less - Date Issued
- 2013
- Identifier
- CFH0004478, ucf:45070
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004478