Current Search: response surface methodology (x)
View All Items
- Title
- INVESTIGATION OF NASCAR RESTRICTOR PLATE MANIFOLD INSERT USING WAVE ENGINE SIMULATION AND RESPONSE SURFACE METHODOLOGY.
- Creator
-
Gross, John Mason, Hoekstra, Robert, University of Central Florida
- Abstract / Description
-
With the increasing growth in computer processing power, computer based computational fluid dynamics simulations are finding increasing acceptance and use in the field of internal combustion engine development. Once fully developed, such simulations provide detailed and expedient tools for testing existing theories, as well as new ideas. While numerous studies on wave propagation and fluid flow in intakes manifolds exist, most restrict the analysis to a single intake runner and port,...
Show moreWith the increasing growth in computer processing power, computer based computational fluid dynamics simulations are finding increasing acceptance and use in the field of internal combustion engine development. Once fully developed, such simulations provide detailed and expedient tools for testing existing theories, as well as new ideas. While numerous studies on wave propagation and fluid flow in intakes manifolds exist, most restrict the analysis to a single intake runner and port, examining only the dynamics from the runner-to-plenum junction downstream to the valve. While such analyses provide comprehensive models for wave propagation dynamics in the runner, little is published on the fluid dynamics and wave propagation in the plenum, and the interactions between runners when an intake manifold's geometric constraints prevent symmetry in the manifold. This paper will examine the modeling of a 2003 specification Dodge Motorsports NASCAR Restrictor Plate engine using Ricardo's WAVE engine simulation computational fluid dynamics software. This examination will include an introduction to the software and required engine data for constructing a comprehensive model, the process used to validate the simulation's output with acquired engine performance data, and the use of response surface methodology to optimize the dimensions of the plenum insert associated junction. Additionally, an analysis of the problems with modeling this area of the manifold using one-dimensional CFD will be conducted, as well as a discussion of the theories surrounding the insert. Finally, a new hypothesis regarding the insert as well as future work to examine this hypothesis will be introduced.
Show less - Date Issued
- 2004
- Identifier
- CFE0000124, ucf:46204
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000124
- Title
- Multi-Sensor Optimization of the Simultaneous Turning and Boring Operation.
- Creator
-
Deane, Erick, Xu, Chengying, Gou, Jihua, Gordon, Ali, University of Central Florida
- Abstract / Description
-
To remain competitive in today's demanding economy, there is an increasing demand for improved productivity and scrap reduction in manufacturing. Traditional manufacturing metal removal processes such as turning and boring are still one of the most used techniques for fabricating metal products. Although the essential metal removal process is the same, new advances in technology have led to improvements in the monitoring of the process allowing for reduction of power consumption, tool wear,...
Show moreTo remain competitive in today's demanding economy, there is an increasing demand for improved productivity and scrap reduction in manufacturing. Traditional manufacturing metal removal processes such as turning and boring are still one of the most used techniques for fabricating metal products. Although the essential metal removal process is the same, new advances in technology have led to improvements in the monitoring of the process allowing for reduction of power consumption, tool wear, and total cost of production. Replacing used CNC lathes from the 1980's in a manufacturing facility may prove costly, thus finding a method to modernize the lathes is vital.This research focuses on Phase I and II of a three phase research project where the final goal is to optimize the simultaneous turning and boring operation of a CNC Lathe. From the optimization results it will be possible to build an adaptive controller that will produce parts rapidly while minimizing tool wear and machinist interaction with the lathe. Phase I of the project was geared towards selecting the sensors that were to be used to monitor the operation and designing a program with an architecture that would allow for simultaneous data collection from the selected sensors at high sampling rates. Signals monitored during the operation included force, temperature, vibration, sound, acoustic emissions, power, and metalworking fluid flow rates. Phase II of this research is focused on using the Response Surface Method to build empirical models for various responses and to optimize the simultaneous cutting process. The simultaneous turning and boring process was defined by the four factors of spindle speed, feed rate, outer diameter depth of cut, and inner diameter depth of cut. A total of four sets of experiments were performed. The first set of experiments screened the experimental region toiiidetermine if the cutting parameters were feasible. The next three set s of designs of experiments used Central Composite Designs to build empirical models of each desired response in terms of the four factors and to optimize the process. Each design of experiments was compared with one another to validate that the results achieved were accurate within the experimental region.By using the Response Surface Method optimal machining parameter settings were achieved. The algorithm used to search for optimal process parameter settings was the desirability function. By applying the results from this research to the manufacturing facility, they will achieve reduction in power consumption, reduction in production time, and decrease in the total cost of each part.
Show less - Date Issued
- 2011
- Identifier
- CFE0004098, ucf:49087
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004098