Current Search: shear (x)
-
-
Title
-
UNDERSTANDING AND MODELING PATHWAYS TO THROMBOSIS.
-
Creator
-
Seligson, John, Kassab, Alain, University of Central Florida
-
Abstract / Description
-
Intra-vessel thrombosis leads to serious problems in patient health. Coagulation can constrict blood flow and induce myocardial infarction or stroke. Hemodynamic factors in blood flow promote and inhibit the coagulation cascade. Mechanically, high shear stress has been shown to promote platelet activation while laminar flow maintains plasma layer separation of platelets and endothelial cells, preventing coagulation. These relationships are studied experimentally, however, physical properties...
Show moreIntra-vessel thrombosis leads to serious problems in patient health. Coagulation can constrict blood flow and induce myocardial infarction or stroke. Hemodynamic factors in blood flow promote and inhibit the coagulation cascade. Mechanically, high shear stress has been shown to promote platelet activation while laminar flow maintains plasma layer separation of platelets and endothelial cells, preventing coagulation. These relationships are studied experimentally, however, physical properties of thrombi, such as density and viscosity, are lacking in data, preventing a comprehensive simulation of thrombus interaction. This study incorporates experimental findings from literature to compile a characteristic mechanical property data set for use in thrombosis simulation. The focus of this study's simulation explored how thrombi interact between other thrombi and vessel walls via Volume of Fluid method. The ability to predict thrombosis under specific hemodynamic conditions was also a feature of the data collection. Using patient specific vessel geometry, the findings in this study can be applied to simulate thrombosis scenarios. The possible applications of such a simulation include a more precise method for estimation of patient myocardial infarction or stroke risk and a possible analysis of vessel geometry modification under surgery.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFH0004837, ucf:45440
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH0004837
-
-
Title
-
MIMICKING BLOOD RHEOLOGY FOR MORE ACCURATE MODELING IN BENCHTOP RESEARCH.
-
Creator
-
Webb, Lindsey, Kassab, Alain, University of Central Florida
-
Abstract / Description
-
To confirm computer simulations and Computational Fluid Dynamics (CFD) analysis, benchtop experiments are needed with a fluid that mimics blood and its viscoelastic properties. Blood is challenging to use as a working fluid in a laboratory setting because of health and safety concerns. Therefore, a blood analogue is necessary to perform benchtop experiments. Viscosity is an important property of fluids for modeling and experiments. Blood is a shear thinning fluid, so it has a decreasing...
Show moreTo confirm computer simulations and Computational Fluid Dynamics (CFD) analysis, benchtop experiments are needed with a fluid that mimics blood and its viscoelastic properties. Blood is challenging to use as a working fluid in a laboratory setting because of health and safety concerns. Therefore, a blood analogue is necessary to perform benchtop experiments. Viscosity is an important property of fluids for modeling and experiments. Blood is a shear thinning fluid, so it has a decreasing viscosity with higher shear rates. This project seeks to create a blood mimicking fluid for benchtop laboratory use. Numerous fluids with different combinations of water, glycerin, and xanthan gum were created to mimic the shear thinning property of blood at different hematocrit levels. Since the amount of xanthan gum is very small, an analytical balance was used. To mix the solution, an immersion blender and a heat circulator were used. The data were obtained from 10-90 torque percent, which is the range over which the rheometer is accurate, so the exact ranges of shear rate tested depended on the test fluid. The created solutions were compared to blood at the equivalent hematocrit and previously performed tests.The three different equivalent hematocrits all produced results similar to viscosities of blood. The results were similarly representative of blood at different equivalent viscosities for the 0.0075% xanthan gum and the 0.075% xanthan gum by weight. The solutions were able to mimic the shear thinning behavior of blood at different equivalent hematocrits. The fluids with 0.075% xanthan gum and 50% water and 50% glycerin is a better representative than the fluids with 0.075% xanthan gum and 60% water and 40% glycerin.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFH2000447, ucf:45701
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH2000447
-
-
Title
-
Performance of Mechanical and Non-mechanical Connections to GFRP Components.
-
Creator
-
Dike, Nnadozie, Mackie, Kevin, Gou, Jihua, Chopra, Manoj, University of Central Florida
-
Abstract / Description
-
There are presently many solutions to dealing with aging or deteriorated structures. Depending on the state of the structure, it may need to be completely over-hauled, demolished and replaced, or only specific components may need rehabilitation. In the case of bridges, rehabilitation and maintenance of the decks are critical needs for infrastructure management. Viable rehabilitation options include replacement of decks with aluminum extrusions, hybrid composite and sandwich systems, precast...
Show moreThere are presently many solutions to dealing with aging or deteriorated structures. Depending on the state of the structure, it may need to be completely over-hauled, demolished and replaced, or only specific components may need rehabilitation. In the case of bridges, rehabilitation and maintenance of the decks are critical needs for infrastructure management. Viable rehabilitation options include replacement of decks with aluminum extrusions, hybrid composite and sandwich systems, precast reinforced concrete systems, or the use of pultruded fiber-reinforced polymer (FRP) shapes. Previous research using pultruded glass fiber-reinforced polymer (GFRP) decks, focused on behaviour under various strength and serviceability loading conditions. Failure modes observed were specific to delamination of the flexural cross sections, local crushing under loading pads, web buckling and lip separation. However certain failure mechanisms observed from in-situ installations differ from these laboratory results, including behaviour of the connectors or system of connection, as well as the effect of cyclic and torsional loads on the connection.This thesis investigates the role of mechanical and non-mechanical connectors in the composite action and failure mechanisms in a pultruded GFRP deck system. There are many interfaces including top panel to I-beam, deck panel to girder, and panel to panel, but this work focuses on investigating the top panel connection. This is achieved through comparative component level shear, uplift, and flexure testing to characterize failure and determine connector capacity. Additionally, a connection of this GFRP deck system to a concrete girder is investigated during the system-level test. Results show that an epoxy non-mechanical connection may be better than mechanical options in ensuring composite behaviour of the system.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004371, ucf:49413
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004371
-
-
Title
-
SLOPE STABILITY ANALYSIS OF CLASS I LANDFILLS WITH CO DISPOSAL OF BIOSOLIDS USING FIELD TEST DATA.
-
Creator
-
Vajirkar, Mrutyunjay, Chopra, Dr. Manoj, University of Central Florida
-
Abstract / Description
-
Land filling provides a major, safe, and economical disposal route for biosolids and sludges. With an expanding world, the demand for larger and higher capacity landfills is rapidly increasing. Proper analysis and design on such fills have pushed the boundaries of geotechnical engineering practice, in terms of proper identification and assessment of strength and deformation characteristics of waste materials. The engineering properties of Municipal Solid Waste (MSW) with co-disposal of...
Show moreLand filling provides a major, safe, and economical disposal route for biosolids and sludges. With an expanding world, the demand for larger and higher capacity landfills is rapidly increasing. Proper analysis and design on such fills have pushed the boundaries of geotechnical engineering practice, in terms of proper identification and assessment of strength and deformation characteristics of waste materials. The engineering properties of Municipal Solid Waste (MSW) with co-disposal of biosolids and sludges with regards to moisture characteristics and geotechnical stability are of utmost importance. Significant changes in the composition and characteristics of landfill may take place with the addition of sludges and biosolids. In particular, the stability of waste slopes needs to be investigated, which involves the evaluation of the strength properties of the mixture of the waste and biosolids. This thesis deals with impact of the addition of biosolids on the geotechnical properties of class I landfill as determined from field investigations. The geotechnical properties are evaluated using an in-situ deep exploration test, called the Cone Penetration Test (CPT). CPT provides a continuous log of subsurface material properties using two measuring mechanisms, namely, tip resistance and side friction. The areas receiving biosolids are compared with areas without, to evaluate the effect of landfilling of biosolids. The required geotechnical shear strength parameters (angle of internal friction and cohesion) of MSW and biosolids mixture are determined by correlation with CPT results similar to the procedure followed in evaluating soil properties. The shear strength parameters obtained from the CPT data are then used to study the stability of different slope configurations of the landfill. The slope stability analysis is conducted on the various landfill models using the computer software SLOPE/W. This software was designed for soils but was found to be suitable for modeling landfills, as the waste is assumed to act similar to a cohesionless soil. Based on the field investigations, the angle of internal friction was found to be about 29° and the determination of any cohesion was not possible. It was concluded that the most suitable practical solution to adding biosolids into the landfill was in the form of trenches. From the slope stability study, it was found that the factor of safety reduces significantly with the introduction of biosolids due to a reduction in shear strength and increase in the overall moisture content. From a parametric study, the stability of a 1:2 side slope with an angle of friction lower than about 20° was found to be less than the safe limit of 1.5. In addition, the factors of safety for landfills with trenches extending close to the edges of the slopes were also found to be unsafe and this situation needs to be avoided in practice.
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000301, ucf:46313
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000301
-
-
Title
-
FINITE ELEMENT SIMULATION OF SINGLE-LAP SHEAR TESTS UTILIZING THE COHESIVE ZONE APPROACH.
-
Creator
-
Perez, Wilson A, Gordon, Ali P., University of Central Florida
-
Abstract / Description
-
Many applications require adhesives with high strength to withstand the exhaustive loads encountered in regular operation. In aerospace applications, advanced adhesives are needed to bond metals, ceramics, and composites under shear loading. The lap shear test is the experiment of choice for evaluating shear strength capabilities of adhesives. Specifically during single-lap shear testing, two overlapping rectangular tabs bonded by a thin adhesive layer are subject to tension. Shear is imposed...
Show moreMany applications require adhesives with high strength to withstand the exhaustive loads encountered in regular operation. In aerospace applications, advanced adhesives are needed to bond metals, ceramics, and composites under shear loading. The lap shear test is the experiment of choice for evaluating shear strength capabilities of adhesives. Specifically during single-lap shear testing, two overlapping rectangular tabs bonded by a thin adhesive layer are subject to tension. Shear is imposed as a result. Debonding occurs when the shear strength of the adhesive is surpassed by the load applied by the testing mechanism. This research develops a finite element model (FEM) and material model which allows mechanicians to accurately simulate bonded joints under mechanical loads. Data acquired from physical tests was utilized to correlate the finite element simulations. Lap shear testing has been conducted on various adhesives, specifically SA1-30-MOD, SA10-100, and SA10-05, single base methacrylate adhesives. The adhesives were tested on aluminum, stainless steel, and cold rolled steel adherends. The finite element model simulates what is observed during a physical single-lap shear test consisting of every combination of the mentioned materials. To accomplish this, a three-dimensional model was created and the cohesive zone approach was used to simulate debonding of the tabs from the adhesive. The thicknesses of the metallic tabs and the adhesive layer were recorded and incorporated into the model in order to achieve an accurate solution. From the data, force output and displacement of the tabs are utilized to create curves which were compared to the actual data. Stress and strain were then computed and plotted to verify the validity of the simulations. The modeling and constant determination approach developed here will continue to be used for newly-developed adhesives.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFH2000149, ucf:45973
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH2000149
-
-
Title
-
Seismic Response of Moment Resisting Frames Coupled with Rocking Walls.
-
Creator
-
Aghagholizadeh, Mehrdad, Makris, Nicos, Catbas, Necati, Mackie, Kevin, Kauffman, Jeffrey L., University of Central Florida
-
Abstract / Description
-
This study investigates the inelastic response of yielding structures coupled with rocking walls. This topic is of major significance in the design of tall moment-resisting buildings, since during recent major earthquakes several tall, moment-resisting frames that had been designed in an accordance to the existing seismic code provisions, exhibited a weak-story failure. Utilization of this structural system can help reducing maximum story drifts, prevents weak story failure and minimize...
Show moreThis study investigates the inelastic response of yielding structures coupled with rocking walls. This topic is of major significance in the design of tall moment-resisting buildings, since during recent major earthquakes several tall, moment-resisting frames that had been designed in an accordance to the existing seismic code provisions, exhibited a weak-story failure. Utilization of this structural system can help reducing maximum story drifts, prevents weak story failure and minimize residual deformation of the structure. This study first examines different configurations of both stepping rocking walls and pinned rocking walls that have been reported in the literature.Next, effect of additional vertical tendons or vertical damping devices in maximum response of the system is investigated. This research first derives the nonlinear equations of motion of a yieldingoscillator coupled with a rocking wall and the dependability of the one-degree of freedom idealization is validated against the nonlinear time-history response analysis of a 9-story moment-resisting frame coupled with a rocking wall. This research finally concludes that, stepping wall suppresses peak and permanent displacements, with the heavier wall being most effective. In contrast, the pinned rocking wall increases in general the peak inelastic displacements and the permanent displacements. While, the coupling of weak building frames with rocking walls is an efficient strategy that controls inelastic deformations by enforcing a uniform interstory-drift distribution, therefore, avoiding mid-story failures, the study shows that even for medium-rise buildings the effect of vertical tendons on the inelastic structural response is marginal, except for increasing the vertical reactions at the pivoting points of the rocking wall. Additionally, The SDOF idealization presented in this study compares satisfactory with finite-element analysis of a 9-story steel SAC building coupled with a stepping rocking wall; therefore, the SDOF idealization can be used with confidence for preliminary analysis and design.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007301, ucf:52157
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007301
-
-
Title
-
Failure Analysis of Impact-Damaged Metallic Poles Repaired With Fiber Reinforced Polymer Composites.
-
Creator
-
Slade, Robert, Mackie, Kevin, Yun, Hae-Bum, Gou, Jihua, University of Central Florida
-
Abstract / Description
-
Metallic utility poles, light poles, and mast arms are intermittently damaged by vehicle collision. In many cases the vehicular impact does not cause immediate failure of the structure, but induces localized damage that may result in failure under extreme service loadings or can promote degradation and corrosion within the damaged region. Replacement of these poles is costly and often involves prolonged lane closures, service interruption, and temporary loss of functionality. Therefore, an in...
Show moreMetallic utility poles, light poles, and mast arms are intermittently damaged by vehicle collision. In many cases the vehicular impact does not cause immediate failure of the structure, but induces localized damage that may result in failure under extreme service loadings or can promote degradation and corrosion within the damaged region. Replacement of these poles is costly and often involves prolonged lane closures, service interruption, and temporary loss of functionality. Therefore, an in situ repair of these structures is required.This thesis examines the failure modes of damaged metallic poles reinforced with externally-bonded fiber reinforced polymer (FRP) composites. Several FRP repair systems were selected for comparison, and a set of medium and full-scale tests were conducted to identify the critical failure modes. The material properties of each component of the repair were experimentally determined, and then combined into a numerical model capable of predicting global response.Four possible failure modes are discussed: yielding of the unreinforced substrate, tensile rupture of the FRP, compressive buckling of the FRP, and debonding of the FRP from the substrate. It was found that simple linear, bilinear, and trilinear stress-strain relationships accurately describe the response of the composite and substrate components, whereas a more complex bond-slip relationship is required to characterize debonding. These constitutive properties were then incorporated into MSC.Marc, a versatile nonlinear finite element program. The output of the FEM analysis showed good agreement with the results of the experimental bond-slip tests.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004262, ucf:49514
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004262
-
-
Title
-
POLYURETHANE FIBER REINFORCED POLYMER STRENGTHENING OF SHEAR DEFICIENT REINFORCED CONCRETE BEAMS.
-
Creator
-
Al-Lebban, Yasir, Mackie, Kevin, Chopra, Manoj, Makris, Nicos, Gou, Jihua, University of Central Florida
-
Abstract / Description
-
The use of externally-bonded fiber-reinforced polymer (FRP) composites has been established as an effective means for the strengthening of shear-deficient reinforced concrete (RC) flexural members. Epoxy-based wet layup systems were predominantly employed in previous studies. In this study, carbon FRP pre-impregnated with polyurethane resin is utilized in strengthening shear-deficient RC beams and compared to an epoxy resin. Fourteen small-scale (96 in span, 6 in width, and 12 in height) and...
Show moreThe use of externally-bonded fiber-reinforced polymer (FRP) composites has been established as an effective means for the strengthening of shear-deficient reinforced concrete (RC) flexural members. Epoxy-based wet layup systems were predominantly employed in previous studies. In this study, carbon FRP pre-impregnated with polyurethane resin is utilized in strengthening shear-deficient RC beams and compared to an epoxy resin. Fourteen small-scale (96 in span, 6 in width, and 12 in height) and five large-scale (132 in span, 12 in width, and 17 in height) flexural specimens were tested, considering FRP system type (polyurethane versus epoxy), size effect, shear span-to-depth ratio, FRP configuration (U-wraps versus side bonding), and FRP scheme (sheets versus strips with 45o or 90o). Experimental strength testing under four-point loading demonstrated similar or enhanced shear capacity when strengthening by the polyurethane compared to the epoxy composite systems.The shear behavior of polyurethane-based FRP composite system is investigated in this research using analytical and numerical approaches. A closed-form mechanics-based analytical model, utilizing the principle of effective FRP stress and upper-bound theorem, illustrated that the shear behavior and debonding mechanism were dependent on both FRP composite and bond characteristics. The analytical model is expressed in terms of shear crack opening crossed by the FRP laminate and gives good agreement with experimental results. The finite element analysis (FEA) model shows that the stresses in the FRP are not in single direction as in the coupon tests, and the biaxial stress states should be taken into consideration.The structural behavior of RC members strengthened with externally-bonded FRP composites is mobilized through the composite action technique. Bond stress can be defined as the shear stress acting in the interface between FRP and concrete. It is of crucial importance to evaluate the failure mode behavior. Debonding (loss of adhesion) failure is one of the most common modes of failure encountered in shear strengthening RC members in practice. Numerous constitutive bond-slip models have been proposed and derived numerically and mathematically based on experimental data with an assumption that the FRP width bp is taken as a variable and all stresses or strains at the same longitudinal coordinate (L direction) are uniform. No attention has been given to study the bond states of stress which are mainly altered by the inclined shear cracks in concrete. A new bond-slip law was proposed to address the biaxial two-dimensional (2D) states of stress problem. Numerical solution by finite difference (FD) was conducted to solve four partial differential equations per node (2 for FRP and 2 for concrete in each direction) with appropriate boundary conditions to obtain the stresses, slips, and strains based on the proposed bond-slip model. A new experimental setup was proposed to represent the 2D bond-slip model by lap shear tests in both directions by laminating two perpendicular strips on concrete blocks with the proposed strain profile. Experimental calibration has been carried out by using nonlinear least-squares regression (fitting) of the experimental strain data with the numerical FD equations to obtain the bond-slip parameters for the 2D FRP-to-concrete polyurethane interface system.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006852, ucf:51737
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006852
-
-
Title
-
Fluid Flow Characteristics of a Co-Flow Fluidic Slot Jet Thrust Augmentation Propulsion System.
-
Creator
-
Garrett, Brian, Ahmed, Kareem, Kapat, Jayanta, Bhattacharya, Samik, University of Central Florida
-
Abstract / Description
-
The UAV industry is booming with investments in research and development on improving UAV systems in order to increase applications and reduce costs of the use of these machines. Current UAV machines are developed according to the quadcopter design which has a rotary propulsion system which provides the lift needed for the aerial vehicles. This design has some flaws; namely safety concerns and noise/vibration production both of which come from the rotary propulsion system. As such, a novel...
Show moreThe UAV industry is booming with investments in research and development on improving UAV systems in order to increase applications and reduce costs of the use of these machines. Current UAV machines are developed according to the quadcopter design which has a rotary propulsion system which provides the lift needed for the aerial vehicles. This design has some flaws; namely safety concerns and noise/vibration production both of which come from the rotary propulsion system. As such, a novel propulsion system using slip stream air passed through high performance slot jets is proposed and analysis of the fluid characteristics is presented in this report.The test section for the experiment is developed using 3D printed ABS plastic airfoils modified with internal cavities where pressurized air is introduced and then expelled through slot jets on the pressure side of the airfoils. Entrainment processes develop in the system through high momentum fluid introduction into a sedentary secondary fluid. Entrainment is governed by pressure gradients and turbulent mixing and so turbulent quantities that measure these processes are extracted and analyzed according to the independent variable's effects on these quantities. Pitot probe testing extracted one dimensional fluid information and PIV analysis is used to characterize the two-dimensional flow aspects.High slot jet velocities are seen to develop flows dominated by convection pushing momentum mixing downstream reducing the mixing while low slot jet speeds exhibit higher mass fluxes and thrust development. Confinement spacing is seen to cause a decrease in flow velocity and thrust as the spacing is decreased for high speed runs. The most constricted cross sectional runs showed high momentum mixing and developed combined self-similar flow through higher boundary layer interactions and pressures, but this also hurt thrust development. The Angle of Attack of the assembly proved to be the most important variable. Outward angling showed the influence of coanda effects but also demonstrated the highest bulk fluid flow with turbulence driven momentum mixing. Inward angling created combined fluid flow downstream with high momentum mixing upstream driven by pressure. Minimal mixing is seen when the airfoils are not angled and high recirculation zones along the boundaries. The optimal setup is seen to when the airfoils are angled outwards where the highest thrust and bulk fluid movement is developed driven by the turbulent mixing induced by the increasing cross sectional area of the system.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007636, ucf:52509
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007636
-
-
Title
-
INELASTIC DYNAMIC BEHAVIOR AND DESIGN OF HYBRID COUPLED WALL SYSTEMS.
-
Creator
-
Hassan, Mohamed Ali, El-Tawil, Sherif, University of Central Florida
-
Abstract / Description
-
A key consideration in seismic design of buildings is to ensure that the lateral load resisting system has an appropriate combination of strength, stiffness and energy dissipation capacity. Hybrid coupled wall systems, in which steel beams are used to couple two or more reinforced concrete shear walls in series, can be designed to have these attributes and therefore have the potential to deliver good performance under severe seismic loading. This research presents an investigation of the...
Show moreA key consideration in seismic design of buildings is to ensure that the lateral load resisting system has an appropriate combination of strength, stiffness and energy dissipation capacity. Hybrid coupled wall systems, in which steel beams are used to couple two or more reinforced concrete shear walls in series, can be designed to have these attributes and therefore have the potential to deliver good performance under severe seismic loading. This research presents an investigation of the seismic behavior of this type of structural system. System response of 12- and 18-story high prototypes is studied using transient finite element analyses that accounts for the most important aspects of material nonlinear behavior including concrete cracking, tension stiffening, and compressive behavior for both confined and unconfined concrete as well as steel yielding. The developed finite element models are calibrated using more detailed models developed in previous research and are validated through numerous comparisons with test results of reinforced concrete walls and wall-beam subassemblages. Suites of transient inelastic analyses are conducted to investigate pertinent parameters including hazard level, earthquake record scaling, dynamic base shear magnification, interstory drift, shear distortion, coupling beam plastic rotation, and wall rotation. Different performance measures are proposed to judge and compare the behavior of the various systems. The analyses show that, in general, hybrid coupled walls are particularly well suited for use in regions of high seismic risk. The results of the dynamic analyses are used to judge the validity of and to refine a previously proposed design method based on the capacity design concept and the assumption of behavior dominated by the first vibration mode. The adequacy of design based on the pushover analysis procedure as promoted in FEMA-356 (2000) is also investigated using the dynamic analysis results. Substantial discrepancies between both methods are observed, especially in the case of the 18-story system. A critical assessment of dynamic base shear magnification is also conducted, and a new method for estimating its effects is suggested. The method is based on a modal combination procedure that accounts for presence of a plastic hinge at the wall base. Finally, the validity of limitations in FEMA-368 (2000) on building height, particularly for hybrid coupled wall systems, is discussed.
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000047, ucf:46086
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000047
-
-
Title
-
VARIABLE FLUID FLOW REGIMES ALTER ENDOTHELIAL ADHERENS JUNCTIONS AND TIGHT JUNCTIONS.
-
Creator
-
Ranadewa, Dilshan, Steward, Robert, Gou, Jihua, Mansy, Hansen, University of Central Florida
-
Abstract / Description
-
Variable blood flow regimes influence a range of cellular properties ranging from cell orientation, shape, and permeability: all of which are dependent on endothelial cell-cell junctions. In fact, cell-cell junctions have shown to be an integral part of vascular homeostasis through the endothelium by allowing intercellular signaling and passage control through tight junctions (TJs), adherens junctions (AJs), and gap junctions (GJs). It was our objective to determine the structural response of...
Show moreVariable blood flow regimes influence a range of cellular properties ranging from cell orientation, shape, and permeability: all of which are dependent on endothelial cell-cell junctions. In fact, cell-cell junctions have shown to be an integral part of vascular homeostasis through the endothelium by allowing intercellular signaling and passage control through tight junctions (TJs), adherens junctions (AJs), and gap junctions (GJs). It was our objective to determine the structural response of both AJs and TJs under steady and oscillatory flow. Human brain microvascular endothelial cells (HBMECs) were cultured in a parallel plate flow chamber and exposed to separate trails of steady and oscillatory fluid shear stress for 24 hours. Steady flow regimes consisted of a low laminar flow (LLF) of 1 dyne/cm2, and a high laminar flow (HLF) of 10 dyne/cm2 and oscillatory flow regimes consisted of low oscillatory flow (LOF) +/- 1 dyne/cm2 and high oscillatory flow (HLF) of +/- 10 dyne/cm2. We then imaged the TJs ZO-1 Claudin-5 and AJs JAM-A VE-Cadherin and subsequently analyzed their structural response as a function of pixel intensity. Our findings revealed an increase in pixel intensity between LLF and LOF along the boundary of the cells in both TJs ZO1 Claudin 5. Therefore, our results demonstrate the variable response of different cell-cell junctions under fluid shear, and for the first time, observes the difference in cell-cell junctional structure amongst steady and oscillatory flow regimes
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007518, ucf:52618
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007518
-
-
Title
-
Fiber-Reinforced Polymer (FRP) Composites in Retrofitting of Concrete Structures: Polyurethane Systems Versus Epoxy Systems.
-
Creator
-
El Zghayar, Elie, Mackie, Kevin, Catbas, Necati, Chopra, Manoj, University of Central Florida
-
Abstract / Description
-
Fiber reinforced polymer (FRP) composites have been of interest to the structural engineering society since the earliest days of FRP composites industry. The use of such systems has been implemented in both new construction and for repair and rehabilitation of existing structures. Since the 1980s, researchers have developed a significant body of knowledge to use FRP composites in infrastructure applications; however, most of this established knowledge was concentrated on the use of...
Show moreFiber reinforced polymer (FRP) composites have been of interest to the structural engineering society since the earliest days of FRP composites industry. The use of such systems has been implemented in both new construction and for repair and rehabilitation of existing structures. Since the 1980s, researchers have developed a significant body of knowledge to use FRP composites in infrastructure applications; however, most of this established knowledge was concentrated on the use of traditional epoxy (EP) systems (epoxy matrix FRPs and epoxy adhesives). FRP composites with polyurethane (PU) matrices and adhesives have recently attracted the attention of a few researchers due to their potential advantages in constructibility and mechanical properties. The deployment of these systems is currently limited by a lack of knowledge on mechanical and durability performance. The objective of this research is to quantify the mechanical behavior of PU composites utilized in externally-bonded repair of common flexural and flexural-axial reinforced concrete systems. In addition, the mechanical performance, strength, and failure modes are compared directly with an epoxy-based composite by subjecting reinforced concrete specimens utilizing each of the matrix types (EP and PU) to the same protocols. The study presented therefore allows an objective comparison (advantages and disadvantages) between the two composite system used for repair and rehabilitation of concrete infrastructure. An experimental research program was designed with different length scales. Small-scale experiments were utilized to characterize the component level properties of the materials and bond to concrete, which include the flexural behavior as well as the pure shear behavior. The results of these small scale experiments were used to calibrate analytical models of the interface behavior between FRP laminate and concrete, and paved the way for the next level of the research which studied the behavior of each composite system at larger scales. The large scale experiments included flexural retrofitting of reinforced concrete girders and retrofitting of circular columns using FRP laminates. The large-scale experimental specimens were mechanically damaged prior to FRP repair and testing, making the testing more appropriate compared to common practice of repairing undamaged specimens.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005942, ucf:50820
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005942
-
-
Title
-
Design and Characterization of High Temperature Packaging for Wide-Bandgap Semiconductor Devices.
-
Creator
-
Grummel, Brian, Shen, Zheng, Sundaram, Kalpathy, Yuan, Jiann-Shiun, University of Central Florida
-
Abstract / Description
-
Advances in wide-bandgap semiconductor devices have increased the allowable operating temperature of power electronic systems. High-temperature devices can benefit applications such as renewable energy, electric vehicles, and space-based power electronics that currently require bulky cooling systems for silicon power devices. Cooling systems can typically be reduced in size or removed by adopting wide-bandgap semiconductor devices, such as silicon carbide. However, to do this, semiconductor...
Show moreAdvances in wide-bandgap semiconductor devices have increased the allowable operating temperature of power electronic systems. High-temperature devices can benefit applications such as renewable energy, electric vehicles, and space-based power electronics that currently require bulky cooling systems for silicon power devices. Cooling systems can typically be reduced in size or removed by adopting wide-bandgap semiconductor devices, such as silicon carbide. However, to do this, semiconductor device packaging with high reliability at high temperatures is necessary. Transient liquid phase (TLP) die-attach has shown in literature to be a promising bonding technique for this packaging need. In this work TLP has been comprehensively investigated and characterized to assess its viability for high-temperature power electronics applications. The reliability and durability of TLP die-attach was extensively investigated utilizing electrical resistivity measurement as an indicator of material diffusion in gold-indium TLP samples. Criteria of ensuring diffusive stability were also developed. Samples were fabricated by material deposition on glass substrates with variant Au(-)In compositions but identical barrier layers. They were stressed with thermal cycling to simulate their operating conditions then characterized and compared. Excess indium content in the die-attach was shown to have poor reliability due to material diffusion through barrier layers while samples containing suitable indium content proved reliable throughout the thermal cycling process. This was confirmed by electrical resistivity measurement, EDS, FIB, and SEM characterization. Thermal and mechanical characterization of TLP die-attached samples was also performed to gain a newfound understanding of the relationship between TLP design parameters and die-attach properties. Samples with a SiC diode chip TLP bonded to a copper metalized silicon nitride substrate were made using several different values of fabrication parameters such as gold and indium thickness, Au(-)In ratio, and bonding pressure. The TLP bonds were then characterized for die-attach voiding, shear strength, and thermal impedance. It was found that TLP die-attach offers high average shear force strength of 22.0 kgf and a low average thermal impedance of 0.35 K/W from the device junction to the substrate. The influence of various fabrication parameters on the bond characteristics were also compared, providing information necessary for implementing TLP die-attach into power electronic modules for high-temperature applications. The outcome of the investigation on TLP bonding techniques was incorporated into a new power module design utilizing TLP bonding. A full half-bridge inverter power module for low-power space applications has been designed and analyzed with extensive finite element thermo-mechanical modeling. In summary, TLP die-attach has investigated to confirm its reliability and to understand how to design effective TLP bonds, this information has been used to design a new high-temperature power electronic module.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004499, ucf:49276
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004499
-
-
Title
-
Nano-Particles in Multi-Scale Composites and Ballistic Applications.
-
Creator
-
Gibson, Jason, Gou, Jihua, Raghavan, Seetha, Bai, Yuanli, Zhai, Lei, University of Central Florida
-
Abstract / Description
-
Carbon nanotubes, graphene and nano sized core shell rubber particles have all been extensively researched for their capability to improve mechanical properties of thermoset resins. However, there has been a lack of research on their evaluation for energy absorption in high velocity impact scenarios, and the fundamental mechanics of their failure mechanisms during highly dynamic stress transfer through the matrix. This fundamental research is essential for laying the foundation for...
Show moreCarbon nanotubes, graphene and nano sized core shell rubber particles have all been extensively researched for their capability to improve mechanical properties of thermoset resins. However, there has been a lack of research on their evaluation for energy absorption in high velocity impact scenarios, and the fundamental mechanics of their failure mechanisms during highly dynamic stress transfer through the matrix. This fundamental research is essential for laying the foundation for improvement in ballistic performance in composite armor. In hard armor applications, energy absorption is largely accomplished through delamination between plies of the composite laminate. This energy absorption is accomplished through two mechanisms. The first being the elongation of the fiber reinforcement contained in the resin matrix, and the second is the propagation of the crack in between the discreet fabric plies. This research aims to fundamentally study the energy absorption characteristics of various nano-particles as reinforcements in thermoset resin for high velocity impact applications. Multiple morphologies will be evaluated through use of platelet, tubular and spherical shaped nano-particles. Evaluations of the effect on stress transfer through the matrix due to the combination of nano sized and micro scale particles of milled fiber is conducted. Three different nano-particles are utilized, specifically, multi-walled carbon nanotubes, graphene, and core shell rubber particles. The difference in surface area, aspect ratio and molecular structure between the tube, platelet and spherical nano-particles causes energy absorption through different failure mechanisms. This changes the impact performance of composite panels enhanced with the nano-particle fillers. Composite panels made through the use of dispersing the various nano-particles in a non-contact planetary mixer, are evaluated through various dynamic and static testing, including unnotched cantilever beam impact, mixed mode fracture toughness, split-Hopkinson bar, and ballistic V50 testing.The unnotched cantilever beam testing showed that the addition of milled fiber degraded the impact resistance of the samples. Addition of graphene nano platelets unilaterally degraded impact resistance through the unnotched cantilever beam testing. 1.5% loading of MWCNT showed the greatest increase in impact resistance, with a 43% increase over baseline.Determining the critical load for mixed mode interlaminar shear testing can be difficult for composite panels that bend without breaking. An iterative technique of optimizing the coefficient of determination, R2, in linear regression is developed for objectively determining the point of non-linearity for critical load. This allows for a mathematical method of determination; thereby eliminating any subjective decision of choosing where the data becomes non-linear. The core shell rubber nano particles showed the greatest strain energy release rate with an exponential improvement over the baseline results.Synergistic effects between nano and micro sized particles in the resin matrix during transfer of the stress wave were created and evaluated. Loadings of 1% milled carbon fiber enhanced the V50 ballistic performance of both carbon nanotube and core shell rubber particles in the resin matrix. However, the addition of milled carbon fiber degrades the impact resistance of all nano-particle enhanced resin matrices. Therefore, benefits gained from the addition of micro-sized particles in combination with nano-sized particles, are only seen in high energy impact scenarios with micro second durations.Loadings of 1% core shell rubber particles and 1% milled carbon fiber have an improvement of 8% in V50 ballistic performance over the baseline epoxy sample for 44 mag single wad cutter gas check projectiles. Loadings of 1% multi-walled carbon nanotubes with 1% milled carbon fiber have an improvement of 7.3% in V50 ballistic performance over the baseline epoxy sample.The failure mechanism of the various nano-particle enhanced resin matrices during the ballistic event is discussed through the use of scanning electron microscope images and Raman spectroscopy of the panels after failure. The Raman spectroscopy data shows a Raman shift for the fibers that had an enhancement in the V50 performance through the use of nano-particles. The Raman band for Kevlar(&)#174; centered at 1,649 cm-1 stemming from the stretching of the C==O bond of the fiber shows to be more sensitive to the residual axial strain, while the Raman band centered at 1,611 cm-1 stemming from the C-C phenyl ring is minimally affected for the CSR enhanced panels due to the failure mechanism of the CSR particles during crack propagation.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0004849, ucf:49714
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004849
-
-
Title
-
Characterization of Anisotropic Mechanical Performance of As-Built Additively Manufactured Metals.
-
Creator
-
Siddiqui, Sanna, Gordon, Ali, Raghavan, Seetha, Bai, Yuanli, Sohn, Yongho, University of Central Florida
-
Abstract / Description
-
Additive manufacturing (AM) technologies use a 3D Computer Aided Design (CAD) model to develop a component through a deposition and fusion layer process, allowing for rapid design and geometric flexibility of metal components, for use in the aerospace, energy and biomedical industries. Challenges exist with additive manufacturing that limits its replacement of conventional manufacturing techniques, most especially a comprehensive understanding of the anisotropic behavior of these materials...
Show moreAdditive manufacturing (AM) technologies use a 3D Computer Aided Design (CAD) model to develop a component through a deposition and fusion layer process, allowing for rapid design and geometric flexibility of metal components, for use in the aerospace, energy and biomedical industries. Challenges exist with additive manufacturing that limits its replacement of conventional manufacturing techniques, most especially a comprehensive understanding of the anisotropic behavior of these materials and how it is reflected in observed tensile, torsional and fatigue mechanical responses. As such, there is a need to understand how the build orientation of as-built additively manufactured metals, affects mechanical performance (e.g. monotonic and cyclic behavior, cyclically hardening/softening behavior, plasticity effects on fatigue life etc.); and to use constitutive modeling to both support experimental findings, and provide approximations of expected behavior (e.g. failure surfaces, monotonic and cyclic response, correlations between tensile and fatigue properties), for orientations and experiments not tested, due to the expensive cost associated with AM. A comprehensive framework has been developed to characterize the anisotropic behavior of as-built additively manufactured metals (i.e. Stainless Steel GP1 (SS GP1), similar in chemical composition to Stainless Steel 17-4PH), through a series of mechanical testing, microscopic evaluation and constitutive modeling, which were used to identify a reduced specimen size for characterizing these materials. An analysis of the torsional response of additively manufactured Inconel 718 has been performed to assess the impact of build orientation and as-built conditions on the shearing behavior of this material. Experimental results from DMLS SS GP1 and AM Inconel 718 from literature were used to constitutively model the material responses of these additively manufactured metals. Overall, this framework has been designed to serve as standard, from which build orientation selection can be used to meet specific desired industry requirements.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007097, ucf:52883
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007097