Current Search: small molecule (x)
View All Items
- Title
- Assessment of molecular interactions via magnetic relaxation: a quest for inhibitors of the anthrax toxin.
- Creator
-
Santiesteban, Oscar, Perez Figueroa, Jesus, Liao, Yi, Yestrebsky, Cherie, Hampton, Michael, Lambert, Stephen, University of Central Florida
- Abstract / Description
-
Anthrax is severe disease caused by the gram-positive Bacillus anthracis that can affect humans with deadly consequences. The disease propagates via the release of bacterial spores that can be naturally found in animals or can be weaponized and intentionally released into the atmosphere in a terrorist attack. Once inhaled, the spores become activated and the anthrax bacterium starts to reproduce and damage healthy macrophages by the release of the anthrax toxin. The anthrax toxin is composed...
Show moreAnthrax is severe disease caused by the gram-positive Bacillus anthracis that can affect humans with deadly consequences. The disease propagates via the release of bacterial spores that can be naturally found in animals or can be weaponized and intentionally released into the atmosphere in a terrorist attack. Once inhaled, the spores become activated and the anthrax bacterium starts to reproduce and damage healthy macrophages by the release of the anthrax toxin. The anthrax toxin is composed of three virulent factors: (i) anthrax protective antigen (APA), (ii) anthrax lethal factor (ALF), and (iii) anthrax edema factor (AEF) that work in harmony to effectuate the lethality associated with the disease. Out of the two internalized factors, ALF has been identified to play a critical role in cell death. Studies in animals have shown that mice infected with an anthrax strain lacking ALF survive the infection whereas when ALF is present the survivability of the mice is eliminated. Although the current therapy for anthrax is antibiotic treatment, modern medicine faces some critical limitations when combating infections. Antibiotics have proven very efficient in eliminating the bacterial infection but they lack the ability to destroy or inhibit the toxins released by the bacteria. This is a significant problem since ALF can remain active in the body for days after the infection is eliminated with no way of inhibiting its destructive effects. The use of inhibitors of ALF is an attractive method to treat the pathogenesis of anthrax infections. Over the last decade several inhibitors of the enzymatic activity of ALF have been identified. In order to identify inhibitors of ALF a variety of screening approaches such as library screenings, Mass Spectroscopy- based screenings and scaffold-based NMR screening have been used. Results from these screening have yielded mainly small molecules that can inhibit ALF in low micromolar to nanomolar concentrations. Yet, although valuable, these results have very little significance with regards to treating ALF in a real-life scenario since pharmaceutical companies are not willing to invest in further developing these inhibitors. Furthermore, the low incidence of inhalation anthrax, the lack of a market for an ALF inhibitor, and the expenses associated with the approval process of the FDA, have hindered the motivation of pharmaceutical companies to pursuit these kind of drugs. Therefore we have screened a small-molecule library of FDA approved drugs and common molecules in order to identify currently approved FDA drugs that can also inhibit ALF (Chapter III). The screening revealed that five molecules: sulindac, fusaric acid, naproxen, ketoprofen and ibuprofen bound to either ALF or APA with sulindac binding both. Additionally, we have developed a nanoparticle-based screening method that assesses molecular interactions by magnetic relaxation changes (Chapter II). Using this assay, we were able to accurately measure the dissociation constants of different interactions between several ligands and macromolecules. Moreover, we have used computational docking studies to predict the binding site of the identified molecules on the ALF or APA (Chapter IV). These studies predicted that two molecules sulindac and fusaric acid could be potential inhibitors of ALF since they bind at the enzymatic pocket. As a result, we tested the inhibitory potential of these molecules as well as that of the metabolic derivatives of sulindac (Chapter V). Results from these studies provided conclusive evidence that fusaric acid and sulindac were both strong inhibitors of ALF. Furthermore, the metabolic derivatives of sulindac, sulindac sulfide and sulindac sulfone also inhibited ALF. Overall, taking together these results we have discovered the alternate use of a currently used drug for the treatment of ALF pathogenesis.
Show less - Date Issued
- 2012
- Identifier
- CFE0004794, ucf:49745
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004794
- Title
- IDENTIFICATION OF SMALL MOLECULES THAT INHIBIT PROSTATE CANCER CELL PROLIFERATION.
- Creator
-
Zelaya, Rainel, Chakrabarti, Ratna, University of Central Florida
- Abstract / Description
-
Prostate cancer is the second most often diagnosed cancer and internationally the sixth foremost cause of cancer death in males, as of 2011. Within the United States it is the most common form of cancer in men with 186,000 new cases and with an overall 28,600 deaths in 2008, and it is the second leading kind of cancer-related death in men. The widespread threat that prostate cancer poses against men across the globe cannot be understated, and its initiation and progression must be understood...
Show moreProstate cancer is the second most often diagnosed cancer and internationally the sixth foremost cause of cancer death in males, as of 2011. Within the United States it is the most common form of cancer in men with 186,000 new cases and with an overall 28,600 deaths in 2008, and it is the second leading kind of cancer-related death in men. The widespread threat that prostate cancer poses against men across the globe cannot be understated, and its initiation and progression must be understood in order to truly comprehend its implicated risks and possible forms of treatment. As its name implies, prostate cancer is a form of cancer that develops in the prostate gland located in the male reproductive system. Its progress starts when standard semen-secreting prostate gland cells mutate into cancer cells. Although its developments may start at the prostate gland, cancer cells may metastasize to other parts of the body through circulation systems such as the lymph nodes. The main sites of metastasis for prostate cancer include the adrenal gland,the bones, the liver and the lungs. Although there are treatments available for prostate cancer, there is no definitive cure. The primary goal of this project was to find an alternative form of treatment, which is what will be necessary to combat this cancer.
Show less - Date Issued
- 2014
- Identifier
- CFH0004595, ucf:45228
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004595