Current Search: software testing (x)
View All Items
- Title
- IMPLEMENTATION AND TESTING OF A BLACKBOX AND A WHITEBOX FUZZER FOR FILE COMPRESSION ROUTINES.
- Creator
-
Tobkin, Toby, Guha, Ratan, University of Central Florida
- Abstract / Description
-
Fuzz testing is a software testing technique that has risen to prominence over the past two decades. The unifying feature of all fuzz testers (fuzzers) is their ability to somehow automatically produce random test cases for software. Fuzzers can generally be placed in one of two classes: black-box or white-box. Blackbox fuzzers do not derive information from a program's source or binary in order to restrict the domain of their generated input while white-box fuzzers do. A tradeoff involved in...
Show moreFuzz testing is a software testing technique that has risen to prominence over the past two decades. The unifying feature of all fuzz testers (fuzzers) is their ability to somehow automatically produce random test cases for software. Fuzzers can generally be placed in one of two classes: black-box or white-box. Blackbox fuzzers do not derive information from a program's source or binary in order to restrict the domain of their generated input while white-box fuzzers do. A tradeoff involved in the choice between blackbox and whitebox fuzzing is the rate at which inputs can be produced; since blackbox fuzzers need not do any "thinking" about the software under test to generate inputs, blackbox fuzzers can generate more inputs per unit time if all other factors are equal. The question of how blackbox and whitebox fuzzing should be used together for ideal economy of software testing has been posed and even speculated about, however, to my knowledge, no publically available study with the intent of characterizing an answer exists. The purpose of this thesis is to provide an initial exploration of the bug-finding characteristics of blackbox and whitebox fuzzers. A blackbox fuzzer is implemented and extended with a concolic execution program to make it whitebox. Both versions of the fuzzer are then used to run tests on some small programs and some parts of a file compression library.
Show less - Date Issued
- 2013
- Identifier
- CFH0004463, ucf:45110
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004463
- Title
- INCREMENTAL LIFECYCLE VALIDATION OF KNOWLEDGE-BASED SYSTEMS THROUGH COMMONKADS.
- Creator
-
Batarseh, Feras, Gonzalez, Avelino, University of Central Florida
- Abstract / Description
-
This dissertation introduces a novel validation method for knowledge-based systems (KBS).Validation is an essential phase in the development lifecycle of knowledge-based systems. Validation ensures that the system is valid, reliable and that it reflects the knowledge of the expert and meets the specifications. Although many validation methods have been introduced for knowledge-based systems, there is still a need for an incremental validation method based on a lifecycle model. Lifecycle...
Show moreThis dissertation introduces a novel validation method for knowledge-based systems (KBS).Validation is an essential phase in the development lifecycle of knowledge-based systems. Validation ensures that the system is valid, reliable and that it reflects the knowledge of the expert and meets the specifications. Although many validation methods have been introduced for knowledge-based systems, there is still a need for an incremental validation method based on a lifecycle model. Lifecycle models provide a general framework for the developer and a mapping technique from the system into the validation process. They support reusability, modularity and offer guidelines for knowledge engineers to achieve high quality systems. CommonKADS is a set of models that helps to represent and analyze knowledge-based systems. It offers a de facto standard for building knowledge-based systems. Additionally, CommonKADS is a knowledge representation-independent model. It has powerful models that can represent many domains. Defining an incremental validation method based on a conceptual lifecycle model (such as CommonKADS) has a number of advantages such as reducing time and effort, ease of implementation when having a template to follow, well-structured design, and better tracking of errors when they occur. Moreover, the validation method introduced in this dissertation is based on case testing and selecting an appropriate set of test cases to validate the system. The validation method defined makes use of results of prior test cases in an incremental validation procedure. This facilitates defining a minimal set of test cases that provides complete and effective system coverage. CommonKADS doesn't define validation, verification or testing in any of its models. This research seeks to establish a direct relation between validation and lifecycle models, and introduces a validation method for KBS embedded into CommonKADS.
Show less - Date Issued
- 2011
- Identifier
- CFE0003621, ucf:48879
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003621