Current Search: terahertz (x)
-
-
Title
-
ANGULAR DEPENDENCE OF THE EMISSION FROM THE INTRINSIC JOSEPHSON JUNCTION IN PIE-SHAPED WEDGE TRIANGULAR BSCCO MESAS.
-
Creator
-
Morales, Manuel, Klemm, Richard, University of Central Florida
-
Abstract / Description
-
The purpose of this thesis is to determine the radiation patterns from an acute isosceles triangular superconducting mesa modeled by a pie-shaped geometry. The terahertz band lies between the microwave and infrared regions of the electromagnetic spec- trum. The terahertz radiation from atomic-scale layered superconducting mesas is caused by the tunneling of electron pairs in the ac-Josephson effect. To determine the terahertz power radiated per unit solid angle of an acute isosceles...
Show moreThe purpose of this thesis is to determine the radiation patterns from an acute isosceles triangular superconducting mesa modeled by a pie-shaped geometry. The terahertz band lies between the microwave and infrared regions of the electromagnetic spec- trum. The terahertz radiation from atomic-scale layered superconducting mesas is caused by the tunneling of electron pairs in the ac-Josephson effect. To determine the terahertz power radiated per unit solid angle of an acute isosceles triangular superconducting mesa, a model was employed in which the shape of the mesa is approximated as a pie-shaped wedge. This model is shown to have an accuracy of about 1%. Using Love's Equivalency Principle, the current caused by the Josephson effect is then assumed to be on the edges of the mesa. Since in the mesas used for experiments the electric field is in the direction of the current, it is parallel to the boundary of the sample. Hence, we want the TM modes, and that requires the magnetic field to be transverse to the boundary. We thus require that the tangential component of the magnetic field parallel at the boundary vanishes. Love's equivalency principle provides the easiest and most straight forward way to satisfy this condition. The surface electric current density was modeled by comparing the magnetic vector potential re- sulting from the modeled edge current with that given by a standard volume average integration technique. The surface current density that provided the best approximation to the bulk average was used and the radiation patterns were plotted using Mathematica software.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFH0004762, ucf:45345
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH0004762
-
-
Title
-
POWER DISTRIBUTION OF TERAHERTZ EMISSION FROM HEXAGONAL BSCCO MICROSTRIP ANTENNAS.
-
Creator
-
Davis, Andrew E, Klemm, Richard, University of Central Florida
-
Abstract / Description
-
We analyze the distribution of coherent terahertz radiation from a regular hexagonal microstrip antenna (MSA) made from the high-Tc superconductor Bi2Sr2CaCu2O8+x (BSCCO). We discuss the C6v symmetry of the solutions of the wave equation on a hexagonal domain and distinguish between the closed-form and non-closed-form solutions. The closed-form wavefunctions of the transverse magnetic (TM) electromagnetic cavity modes are presented and formulas for the radiated power arising from the uniform...
Show moreWe analyze the distribution of coherent terahertz radiation from a regular hexagonal microstrip antenna (MSA) made from the high-Tc superconductor Bi2Sr2CaCu2O8+x (BSCCO). We discuss the C6v symmetry of the solutions of the wave equation on a hexagonal domain and distinguish between the closed-form and non-closed-form solutions. The closed-form wavefunctions of the transverse magnetic (TM) electromagnetic cavity modes are presented and formulas for the radiated power arising from the uniform part of the AC Josephson current and from the resonant cavity modes are derived. The wavefunctions and angular distribution of radiation from both sources are plotted for sixteen of the lowest-energy modes. Finally, we comment on the relevance of these power distributions to hexagonal arrays of equilateral triangular MSAs and propose a strategy for studying the non-closed-form modes.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFH2000241, ucf:46016
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH2000241
-
-
Title
-
TERAHERTZ RADIATION FROM HIGH-TEMPERATURE SUPERCONDUCTING BSCCO MESAS OF VARIOUS GEOMETRIES.
-
Creator
-
Cerkoney, Daniel, Klemm, Richard, University of Central Florida
-
Abstract / Description
-
The purpose of this thesis is to examine the radiation from high-temperature superconducting mesas of Bi2Sr2CaCu2O8+d (BSCCO). This is motivated by the need for coherent sources of continuous wave terahertz (THz) emission capable of radiating practically in the THz frequency band. As BSCCO has been shown to be tunable from 0.5-2.4 THz (i.e., through the entire so-called terahertz gap centered about 1 THz), and has a higher peak operating temperature near 1 THz than most alternative sources,...
Show moreThe purpose of this thesis is to examine the radiation from high-temperature superconducting mesas of Bi2Sr2CaCu2O8+d (BSCCO). This is motivated by the need for coherent sources of continuous wave terahertz (THz) emission capable of radiating practically in the THz frequency band. As BSCCO has been shown to be tunable from 0.5-2.4 THz (i.e., through the entire so-called terahertz gap centered about 1 THz), and has a higher peak operating temperature near 1 THz than most alternative sources, it is a good candidate for imaging and spectroscopy device applications. When a static DC voltage is applied to a BSCCO mesa, the stack of Josephson junctions intrinsic to this type-II layered superconductor synchronously radiate. Adjustment of the bath temperature and applied voltage allows for the high degree of tunability observed for such an emitter. To determine the angular dependence of radiation from BSCCO mesas, the dual source model from antenna theory is employed, and Love's equivalence principle is used to simplify this framework. The total emission power obtained in this manner for the pie-shaped wedge is then fit to experimental results for a thin isosceles triangular mesa using the method of least squares, resulting in a standard deviation of 0.4657. Additionally, symmetry is shown to play a significant role in the emissions for the transverse magnetic (TM) cavity modes of the equilateral triangular mesa. When the full group symmetry is imposed, the density of allowed modes is heavily diminished, and the original first excited even mode becomes the C3v symmetric ground state. These results for the equilateral triangle suggest, along with earlier experiments on the regular pentagonal mesa, that symmetry breaking effects can be used for purposes of tuning the characteristic frequency and angular dependence of the power radiated from BSCCO mesas with a high degree of symmetry.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFH0004898, ucf:45429
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH0004898
-
-
Title
-
FAR-INFRARED/MILLIMETER WAVE SOURCE AND COMPONENT DEVELOPMENT FOR IMAGING AND SPECTROSCOPY.
-
Creator
-
Du Bosq, Todd, Boreman, Glenn, University of Central Florida
-
Abstract / Description
-
The far-infrared and millimeter wave (FIR/mmW) (wavelength 75 micrometer to 10 mm) portion of the electromagnetic spectrum is fairly underdeveloped technologically, owing to the large amount of atmospheric attenuation in that range. At present, the FIR/mmW region is lacking in compact, high-brightness radiation sources and practical imaging systems. This dissertation focuses on development of two complementary technologies in this area an active mmW imaging system and high-reflectivity...
Show moreThe far-infrared and millimeter wave (FIR/mmW) (wavelength 75 micrometer to 10 mm) portion of the electromagnetic spectrum is fairly underdeveloped technologically, owing to the large amount of atmospheric attenuation in that range. At present, the FIR/mmW region is lacking in compact, high-brightness radiation sources and practical imaging systems. This dissertation focuses on development of two complementary technologies in this area an active mmW imaging system and high-reflectivity Bragg mirrors for the FIR p-Ge laser. The imaging system uses a vector network analyzer in the frequency range of 90-140 GHz as the radiation source and receiver. Raster scanning is used to map a two-dimensional field of view, demonstrating the detection and imaging of buried plastic landmines. Principal components analysis is used for hyperspectral signal processing, where a series of images is taken at discrete frequencies. Results are obtained as a function of depth and disturbance of the soil surface. In support of this study, various types of soils were characterized for scattering loss across the mmW/FIR region, with measured results compared to theory. This mmW imaging system was also used to demonstrate imaging through walls and other obscuring materials, as well as for imaging of rocks beneath volcanic sand, simulating the conditions encountered by an imaging system on a Mars rover vehicle. Furthermore, a high-reflectivity Si-etalon FIR mirror design was developed and demonstrated as a cavity mirror for the p-Ge laser. These components stand to have a number of systems-level impacts on FIR imagers. In the context of an active illuminator, they may allow narrowband selection from the broad emission spectrum of the p-Ge laser source. These mirrors can also be used in a Fabry-Perot FIR scanning spectrometer, where the resulting high finesse would give discrimination advantages in chemical sensing and astrophysical spectroscopy applications.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001665, ucf:47222
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001665
-
-
Title
-
Sub-Terahertz Spin Pumping from an Insulating Antiferromagnet.
-
Creator
-
Vaidya, Priyanka, Del Barco, Enrique, Neupane, Madhab, Nakajima, Yasuyuki, Hernandez, Florencio, University of Central Florida
-
Abstract / Description
-
The combination of the spin transfer torque and spin Hall effects, or their reciprocal dynamical spin pumping and inverse spin Hall effects, respectively, enable reading and controlling the magnetization state in spintronics devices which are at the verge of mass commercialization as the next generation of energy-efficient and fast magnetic random-access memory applications with the use of ferromagnetic elements, e.g., the spin valve. However, these effects have remained elusive in...
Show moreThe combination of the spin transfer torque and spin Hall effects, or their reciprocal dynamical spin pumping and inverse spin Hall effects, respectively, enable reading and controlling the magnetization state in spintronics devices which are at the verge of mass commercialization as the next generation of energy-efficient and fast magnetic random-access memory applications with the use of ferromagnetic elements, e.g., the spin valve. However, these effects have remained elusive in antiferromagnetic-based devices up to date, despite the fascinating advantages offered by the absence of stray fields (zero net magnetization), Terahertz spin dynamics, and the widespread availability of metallic, insulating and semiconducting antiferromagnetic materials. In this thesis I report the first demonstration of sub-Terahertz dynamical spin pumping at the interface between an antiferromagnet and a non-magnetic material; more specifically a uniaxial insulating antiferromagnet MnF2 and heavy metal Pt. The measured ISHE signal generated by the corresponding spin-charge current interconversion in the platinum layer is modulated by the handedness of the circularly polarized sub-THz irradiation. This effect results directly from the opposite chirality of each of the fundamental dynamical modes of the antiferromagnet. Contrary to the case of ferromagnets, this observation in an antiferromagnetic system allows unambiguously differentiating coherent spin pumping from incoherent spin Seeback effect, by which electric signals result from thermal activation. A complete study of the generated electric signals at the antiferromagnetic resonances, the spin-flop mode and the transition between the two regimes as the microwave polarization is continuously varied from circular to linear polarizations enabled an understanding of the different phenomena governing interconversion of spin dynamics and charge currents at the MnF2/Pt interface.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007870, ucf:52776
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007870
-
-
Title
-
SCANNING FABRY-PEROT SPECTROMETER FOR TERAHERTZ AND GIGAHERTZ SPECTROSCOPY USING DIELECTRIC BRAGG MIRRORS.
-
Creator
-
Cleary, Justin, Peale, Robert, University of Central Florida
-
Abstract / Description
-
A scanning Fabry-Perot transmission filter composed of a pair of dielectric mirrors has been demonstrated at millimeter and sub-millimeter wavelengths. The mirrors are formed by alternating quarter-wave optical thicknesses of silicon and air in the usual Bragg configuration. Detailed theoretical considerations are presented for determining the optimum design including factors that affect achievable finesse. Fundamental loss by lattice and free carrier absorption are considered. High...
Show moreA scanning Fabry-Perot transmission filter composed of a pair of dielectric mirrors has been demonstrated at millimeter and sub-millimeter wavelengths. The mirrors are formed by alternating quarter-wave optical thicknesses of silicon and air in the usual Bragg configuration. Detailed theoretical considerations are presented for determining the optimum design including factors that affect achievable finesse. Fundamental loss by lattice and free carrier absorption are considered. High resistivity in the silicon layers was found important for achieving high transmittance and finesse, especially at the longer wavelengths. Also considered are technological factors such as surface roughness, bowing, and misalignment for various proposed manufacturing schemes. Characterization was performed at sub-mm wavelengths using a gas laser together with a Golay cell detector and at millimeter wavelengths using a backward wave oscillator and microwave power meter. A finesse value of 422 for a scanning Fabry-Perot cavity composed of three-period Bragg mirrors was experimentally demonstrated. Finesse values of several thousand are considered to be within reach. This suggests the possibility of a compact terahertz Fabry-Perot spectrometer that can operate in low resonance order to realize high free spectral range while simultaneously achieving a high spectral resolution. Such a device is directly suitable for airborne/satellite and man-portable sensing instrumentation.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001563, ucf:47128
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001563
-
-
Title
-
MONTE CARLO SIMULATION OF HOLE TRANSPORT AND TERAHERTZ AMPLIFICATION IN MULTILAYER DELTA DOPED SEMICONDUCTOR STRUCTURES.
-
Creator
-
Dolguikh, Maxim, Peale, Robert, University of Central Florida
-
Abstract / Description
-
Monte Carlo method for the simulation of hole dynamics in degenerate valence subbands of cubic semiconductors is developed. All possible intra- and inter-subband scattering rates are theoretically calculated for Ge, Si, and GaAs. A far-infrared laser concept based on intersubband transitions of holes in p-type periodically delta-doped semiconductor films is studied using numerical Monte-Carlo simulation of hot hole dynamics. The considered device consists of monocrystalline pure Ge layers...
Show moreMonte Carlo method for the simulation of hole dynamics in degenerate valence subbands of cubic semiconductors is developed. All possible intra- and inter-subband scattering rates are theoretically calculated for Ge, Si, and GaAs. A far-infrared laser concept based on intersubband transitions of holes in p-type periodically delta-doped semiconductor films is studied using numerical Monte-Carlo simulation of hot hole dynamics. The considered device consists of monocrystalline pure Ge layers periodically interleaved with delta-doped layers and operates with vertical or in-plane hole transport in the presence of a perpendicular in-plane magnetic field. Inversion population on intersubband transitions arises due to light hole accumulation in E B fields, as in the bulk p-Ge laser. However, the considered structure achieves spatial separation of hole accumulation regions from the doped layers, which reduces ionized-impurity and carrier-carrier scattering for the majority of light holes. This allows remarkable increase of the gain in comparison with bulk p-Ge lasers. Population inversion and gain sufficient for laser operation are expected up to 77 K. Test structures grown by chemical vapor deposition demonstrate feasibility of producing the device with sufficient active thickness to allow quasioptical electrodynamic cavity solutions. The same device structure is considered in GaAs. The case of Si is much more complicated due to strong anisotropy of the valence band. The primary new result for Si is the first consideration of the anisotropy of optical phonon scattering for hot holes.
Show less
-
Date Issued
-
2005
-
Identifier
-
CFE0000863, ucf:46672
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000863