Current Search: thermodynamics (x)
View All Items
- Title
- THERMODYNAMIC STUDIES ON THE SYNTHESIS OF NITRIDES AND EPITAXIAL GROWTH OF INGAN.
- Creator
-
Monga, Zinki, Klemenz, Christine, University of Central Florida
- Abstract / Description
-
Nitride semiconductor materials have been used in a variety of applications, such as LEDs, lasers, photovoltaic cells and medical applications. If incandescent bulbs could be replaced by white GaN LEDs, they would not only provide compactness and longer lifetime, but this would also result in huge energy savings. A renewed interest in InGaN emerged recently after it was discovered that the band gap for InN is 0.7eV, instead of the previously published value of 1.9eV. Thus InGaN solid...
Show moreNitride semiconductor materials have been used in a variety of applications, such as LEDs, lasers, photovoltaic cells and medical applications. If incandescent bulbs could be replaced by white GaN LEDs, they would not only provide compactness and longer lifetime, but this would also result in huge energy savings. A renewed interest in InGaN emerged recently after it was discovered that the band gap for InN is 0.7eV, instead of the previously published value of 1.9eV. Thus InGaN solid solutions cover almost the whole visible spectrum, from a band gap of 3.34eV for GaN and 0.7eV for InN. Hence, InGaN can have excellent applications for photovoltaic cells. The objective of this work was to investigate and search for new ways of synthesis of nitrides. We studied the thermodynamics and evaluated chemical compatibilities for the growth of AlN, GaN, InN and their solid solutions from metallic solvents. The compatibility between potential substrate, crucible and solvent materials and various growth atmospheres was evaluated from Gibbs free energy calculations. Most of the nitride synthesis experiments performed by other groups were at higher temperatures (around 2,000C) and pressures up to 1GPa using different growth methods. Therefore, their results could not be extrapolated to our growth system, as their growth conditions were significantly different from ours Moreover, to the best of our knowledge; no-one has ever evaluated such compatibilities by thermodynamic calculations. We used those calculations to design our experiments for further studies on nitrides. Experimentally, we encountered fewer issues such as corrosion problems than others observed with their growth procedures, because near-atmospheric pressures and temperatures not exceeding 1,000C could be used. Preliminary experiments were performed to confirm the thermodynamic computations and test the behavior of the chosen system. A suitable configuration was found that allowed to nucleate films of InGaN on the templates. Nitride templates or 'Buffer layers' were used to saturate the solution and grow the films. A relatively simpler configuration, to create a temperature gradient in the solution was used. Two templates were placed in the crucible, one at the top and the other one at the bottom. The temperature was raised to 950C and they were soaked there for 15-20hrs. After the growth the surface morphology was analyzed using an optical microscope and it was found to be entirely different for both the templates. The atoms from the top template dissolved and attached at the bottom template. This can be explained by the thermal gradient between the two templates: one at the bottom was at lower temperature than the top template, so there was diffusion from the top substrate towards the bottom one. AFM studies were carried out on the film to study the surface morphology of the top and the bottom templates. Growth hillocks having step height typically between 15 and 50 nm were observed. Such hillocks were not present on the templates before the experiment.
Show less - Date Issued
- 2007
- Identifier
- CFE0001806, ucf:47376
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001806
- Title
- PHASE-FIELD SIMULATION OF MICROSTRUCTURALDEVELOPMENT INDUCED BY INTERDIFFUSIONFLUXES UNDER MULTIPLE GRADIENTS.
- Creator
-
Mohanty, Rashmi, Sohn, Yongho, University of Central Florida
- Abstract / Description
-
The diffuse-interface phase-field model is a powerful method to simulate and predict mesoscale microstructure evolution in materials using fundamental properties of thermodynamics and kinetics. The objective of this dissertation is to develop phase-field model for simulation and prediction of interdiffusion behavior and evolution of microstructure in multi-phase binary and ternary systems under composition and/or temperature gradients. Simulations were carried out with emphasis on...
Show moreThe diffuse-interface phase-field model is a powerful method to simulate and predict mesoscale microstructure evolution in materials using fundamental properties of thermodynamics and kinetics. The objective of this dissertation is to develop phase-field model for simulation and prediction of interdiffusion behavior and evolution of microstructure in multi-phase binary and ternary systems under composition and/or temperature gradients. Simulations were carried out with emphasis on multicomponent diffusional interactions in single-phase system, and microstructure evolution in multiphase systems using thermodynamics and kinetics of real systems such as Ni-Al and Ni-Cr-Al. In addition, selected experimental studies were carried out to examine interdiffusion and microstructure evolution in Ni-Cr-Al and Fe-Ni-Al alloys at 1000C. Based on Onsager's formalism, a phase-field model was developed for the first time to simulate the diffusion process under an applied temperature gradient (i.e., thermotransport) in single- and two-phase binary alloys. Development of concentration profiles with uphill diffusion and the occurrence of zero-flux planes were studied in single-phase diffusion couples using a regular solution model for a hypothetical ternary system. Zero-flux plane for a component was observed to develop for diffusion couples at the composition that corresponds to the activity of that component in one of the terminal alloys. Morphological evolution of interphase boundary in solid-to-solid two-phase diffusion couples (fcc- vs. B2-) was examined in Ni-Cr-Al system with actual thermodynamic data and concentration dependent chemical mobility. With the instability introduced as a small initial compositional fluctuation at the interphase boundary, the evolution of the interface morphology was found to vary largely as a function of terminal alloys and related composition-dependent chemical mobility. In a binary Ni-Al system, multiphase diffusion couples of fcc- vs. L12-, vs. and vs. were simulated with alloys of varying compositions and volume fractions of second phase (i.e., ). Chemical mobility as a function of composition was employed in the study with constant gradient energy coefficient, and their effects on the final interdiffusion microstructure was examined. Interdiffusion microstructure was characterized by the type of boundaries formed, i.e. Type 0, Type I, and Type II boundaries, following various experimental observations in literature and thermodynamic considerations. Volume fraction profiles of alloy phases present in the diffusion couples were measured to quantitatively analyze the formation or dissolution of phases across the boundaries. Kinetics of dissolution of phase was found to be a function of interdiffusion coefficients that can vary with composition and temperature. The evolution of interdiffusion microstructures in ternary Ni-Cr-Al solid-to-solid diffusion couples containing fcc- and + (fcc+B2) alloys was studied using a 2D phase-field model. Alloys of varying compositions and volume fractions of the second phase () were used to simulate the dissolution kinetics of the phase. Semi-implicit Fourier-spectral method was used to solve the governing equations with chemical mobility as a function of compositions. The simulation results showed that the rate of dissolution of the phase (i.e., recession of two-phase region) was dependent on the composition of the single-phase alloy and the volume fraction of the phase in the two-phase alloy of the couple. Higher Cr and Al content in the alloy and higher volume fraction of in the alloy lower the rate of dissolution. Simulated results were found to be in good agreement with the experimental observations in ternary Ni-Cr-Al solid-to-solid diffusion couples containing and alloys. For the first time, a phase-field model was developed to simulate the diffusion process under an applied temperature gradient (i.e., thermotransport) in multiphase binary alloys. Starting from the phenomenological description of Onsager's formalism, the field kinetic equations are derived and applied to single-phase and two-phase binary system. Simulation results show that a concentration gradient develops due to preferential movement of atoms towards the cold and hot end of an initially homogeneous single-phase binary alloy subjected to a temperature gradient. The temperature gradient causes the redistribution of both constituents and phases in the two-phase binary alloy. The direction of movement of elements depends on their atomic mobility and heat of transport values.
Show less - Date Issued
- 2009
- Identifier
- CFE0002515, ucf:47658
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002515
- Title
- Thermodynamic Analysis and Optimization of Supercritical Carbon Dioxide Brayton Cycles.
- Creator
-
Mohagheghi, Mahmood, Kapat, Jayanta, Kassab, Alain, Das, Tuhin, Swami, Muthusamy, University of Central Florida
- Abstract / Description
-
The power generation industry is facing new challenging issues regarding accelerating growth of electricity demand, fuel cost and environmental pollution. These challenges accompanied by concerns of energy resources becoming scarce necessitate searching for sustainable and economically competitive solutions to supply the future electricity demand. To this end, supercritical carbon dioxide (S-CO2) Brayton cycles present great promise particularly in high temperature concentrated solar power ...
Show moreThe power generation industry is facing new challenging issues regarding accelerating growth of electricity demand, fuel cost and environmental pollution. These challenges accompanied by concerns of energy resources becoming scarce necessitate searching for sustainable and economically competitive solutions to supply the future electricity demand. To this end, supercritical carbon dioxide (S-CO2) Brayton cycles present great promise particularly in high temperature concentrated solar power (CSP) and waste heat recovery (WHR) applications. With this regard, this dissertation is intended to perform thorough thermodynamic analyses and optimization of S-CO2 Brayton cycles for both of these applications.A modeling tool has been developed, which enables one to predict and analyze the thermodynamic performance of the S-CO2 Brayton cycles in various configurations employing recuperation, recompression, intercooling and reheating. The modeling tool is fully flexible in terms of encompassing the entire feasible design domain and rectifying possible infeasible solutions. Moreover, it is computationally efficient in order to handle time consuming optimization problems. A robust optimization tool has also been developed by employing the principles of genetic algorithm. The developed genetic algorithm code is capable of optimizing non-linear systems with several decision variables simultaneously, and without being trapped in local optimum points.Two optimization schemes, i.e. single-objective and multi-objective, are considered in optimizing the S-CO2 cycles for high temperature solar tower applications. In order to reduce the size and cost of solar block, the global maximum efficiency of the power block should be realized. Therefore, the single-objective optimization scheme is considered to find the optimum design points that correspond to the global maximum efficiency of S-CO2 cycles. Four configurations of S-CO2 Brayton cycles are investigated, and the optimum design point for each configuration is determined. Ultimately, the effects of recompression, reheating, and intercooling on the thermodynamic performance of the recuperated S-CO2 Brayton cycle are analyzed. The results reveal that the main limiting factors in the optimization process are maximum cycle temperature, minimum heat rejection temperature, and pinch point temperature difference. The maximum cycle pressure is also a limiting factor in all studied cases except the simple recuperated cycle. The optimized cycle efficiency varies from 55.77% to 62.02% with consideration of reasonable component performances as we add recompression, reheat and intercooling to the simple recuperated cycle (RC). Although addition of reheating and intercooling to the recuperated recompression cycle (RRC) increases the cycle efficiency by about 3.45 percent points, the simplicity of RC and RRC configurations makes them more promising options at this early development stage of S-CO2 cycles, and are used for further studies in this dissertation.The results of efficiency maximization show that achieving the highest efficiency does not necessarily coincide with the highest cycle specific power. In addition to the efficiency, the specific power is also an important parameter when it comes to investment and decision making since it directly affects the power generation capacity, the size of components and the cost of power blocks. Consequently, the multi-objective optimization scheme is devised to simultaneously maximize both the cycle efficiency and specific power in the simple recuperated and recuperated recompression configurations. The optimization results are presented in the form of two optimum trade-off curves, also known as Pareto fronts, which enable decision makers to choose their desired compromise between the objectives, and to avoid naive solution points obtained from a single-objective optimization approach. Moreover, the comparison of the Pareto optimal fronts associated with the studied configurations reveals the optimum operational region of the recompression configuration where it presents superior performance over the simple recuperated cycle.Considering the extensive potential of waste heat recovery from energy intensive industries and stand-alone gas turbines, this dissertation also investigates the optimum design point of S-CO2 Brayton cycles for a wide range of waste heat source temperatures (500 K to 1100 K). Once again, the simple recuperated and recuperated recompression configurations are selected for this application. The utilization of heat in WHR applications is fundamentally different from that in closed loop heat source applications. The temperature pinching issues are recognized in the waste recovery heat exchangers, which brings about a trade-off between the cycle efficiency and amount of recovered heat. Therefore, maximization of net power output for a given waste heat source is of paramount practical interest rather than the maximization of cycle efficiency. The results demonstrate that by changing the heat source temperature from one application to another, the variation of optimum pressure ratio is insignificant. However, the optimum CO2 to waste gas mass flow ratio and turbine inlet temperature should properly be adjusted. The RRC configuration provides minor increase in power output as compared to RC configuration. Although cycle efficiencies as high as 34.8% and 39.7% can be achieved in RC and RRC configurations respectively, the overall conversion efficiency is less than 26% in RRC and 24.5% in RC.
Show less - Date Issued
- 2015
- Identifier
- CFE0006044, ucf:50993
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006044
- Title
- PLASMA TEMPERATURE MEASUREMENTS IN THE CONTEXT OF SPECTRAL INTERFERENCE.
- Creator
-
Seesahai, Brandon, Baudelet, Matthieu, University of Central Florida
- Abstract / Description
-
The path explored in this thesis is testing a plasma temperature measurement approach that accounts for interference in a spectrum. The Atomic Emission Spectroscopy (AES) technique used is called Laser Induced Breakdown Spectroscopy (LIBS) and involves focusing a laser pulse to a high irradiance onto a sample to induced a plasma. Spectrally analyzing the plasma light provides a "finger print" or spectrum of the sample. Unfortunately, spectral line broadening is a type of interference...
Show moreThe path explored in this thesis is testing a plasma temperature measurement approach that accounts for interference in a spectrum. The Atomic Emission Spectroscopy (AES) technique used is called Laser Induced Breakdown Spectroscopy (LIBS) and involves focusing a laser pulse to a high irradiance onto a sample to induced a plasma. Spectrally analyzing the plasma light provides a "finger print" or spectrum of the sample. Unfortunately, spectral line broadening is a type of interference encountered in a LIBS spectrum because it blends possible ionic or atomic transitions that occur in plasma. To make use of the information or transitions not resolved in a LIBS spectrum, a plasma temperature method is developed. The basic theory of a LIBS plasma, broadening mechanisms, thermal equilibrium and distribution laws, and plasma temperature methods are discussed as background support for the plasma temperature method tested in this thesis. In summary, the plasma temperature method analyzes the Full Width at Half the Maximum (FWHM) of each spectral line for transitions provided from a database and uses them for temperature measurements. The first implementation of the temperature method was for simulated spectra and the results are compared to other conventional temperature measurement techniques. The temporal evolution of experimental spectra are also taken as a function of time to observe if the newly developed temperature technique can perform temporal measurements. Lastly, the temperature method is tested for a simulated, single element spectrum when considering interferences from all the elements provided in an atomic database. From stimulated and experimental spectra analysis to a global database consideration, the advantages and disadvantages of the temperature method are discussed.
Show less - Date Issued
- 2016
- Identifier
- CFH2000140, ucf:46057
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000140
- Title
- EFFECT OF SOURCE WATER BLENDING ON COPPER RELEASE IN PIPE DISTRIBUTION SYSTEM: THERMODYNAMIC AND EMPIRICAL MODELS.
- Creator
-
Xiao, Weizhong, Taylor, James S., University of Central Florida
- Abstract / Description
-
This dissertation focuses on copper release in drinking water. Qualitative and quantitative assessment of Cu and Fe corrosion by process water quality was assessed over one year in a field study using finished waters produced from seven different treatment process and eighteen pilot distribution systems (PDSs) that were made from unlined cast iron and galvanized steel pipes, and lined cement and PVC pipes taken from actual distribution systems. Totally seven different waters were studied,...
Show moreThis dissertation focuses on copper release in drinking water. Qualitative and quantitative assessment of Cu and Fe corrosion by process water quality was assessed over one year in a field study using finished waters produced from seven different treatment process and eighteen pilot distribution systems (PDSs) that were made from unlined cast iron and galvanized steel pipes, and lined cement and PVC pipes taken from actual distribution systems. Totally seven different waters were studied, which consisted of three source waters: groundwater, surface, and simulated brackish water designated as G1, S1, and RO. With certain pre-established blending ratios, these three waters were blended to form another three waters designated as G2, G3, and G4. Enhanced surface water treatment was CFS, ozonation and GAC filtration, which was designated as S1. The CFS surface water was nanofiltered, which is S2. All seven finished waters were stabilized and chloraminated before entering the PDSs. Corrosion potential was compared qualitatively and quantitatively for all seven waters by monitoring copper and iron release from the PDSs. This dissertation consists of four major parts.(1) Copper corrosion surface characterization in which the solid corrosion products formed in certain period of exposure to drinking water were tried to be identified with kinds of surface techniques. Surface characterization indicated that major corrosion products consists of cuprite (Cu2O) as major underneath corrosion layer and tenorite (CuO), cupric hydroxide (Cu(OH)2) on the top surface. In terms of dissolution/precipitation mechanism controlling the copper concentration in bulk solution, cupric hydroxide thermodynamic model was developed.(2) Theoretical thermodynamic models were developed to predict the copper release level quantitatively based on controlling solid phases identified in part (1). These models are compared to actual data and relative assessment is made of controlling solid phases. (3) Non-linear and linear regression models were developed that accommodated the release to total copper for varying water quality. These models were verified using independent data and provide proactive means of assessing and controlling copper release in a varying water quality environment. (4) Simulation of total copper release was conducted using all possible combinations of water quality produced by blending finished waters from ground, surface and saline sources, which involves the comparison of copper corrosion potentials among reverse osmosis, nanofiltration, enhanced coagulation, lime softening, and conventional drinking water treatment.
Show less - Date Issued
- 2004
- Identifier
- CFE0000042, ucf:46069
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000042
- Title
- THE THERMODYNAMICS OF PLANETARY ENGINEERING ON THE PLANET MARS.
- Creator
-
Barsoum, Christopher, Lin, Kuo-Chi, University of Central Florida
- Abstract / Description
-
Mars is a potentially habitable planet given the appropriate planetary engineering efforts. In order to create a habitable environment, the planet must be terraformed, creating quasi-Earth conditions. Benchmarks for minimum acceptable survivable human conditions were set by observing atmospheric pressures and temperatures here on Earth that humans are known to exist in. By observing a positive feedback reaction, it is shown how the sublimation of the volatile southern polar ice cap on Mars...
Show moreMars is a potentially habitable planet given the appropriate planetary engineering efforts. In order to create a habitable environment, the planet must be terraformed, creating quasi-Earth conditions. Benchmarks for minimum acceptable survivable human conditions were set by observing atmospheric pressures and temperatures here on Earth that humans are known to exist in. By observing a positive feedback reaction, it is shown how the sublimation of the volatile southern polar ice cap on Mars can increase global temperatures and pressures to the benchmarks set for minimum acceptable survivable human conditions. Given the degree of uncertainty, utilization of pressure scale heights and the Martin extreme terrain were used to show how less than desirable conditions can still produce results where these benchmarks can be met. Methods for obtaining enough energy to sublimate the southern polar ice cap were reviewed in detail. A new method of using dark, carbonaceous Martian moon material to alter the overall average albedo of the polar ice cap is proposed. Such a method would increase Martian energy efficiency. It is shown that by covering roughly 10% of the Martian polar ice cap with dark carbonaceous material, this required energy can be obtained. Overall contributions include utilization of pressure scale heights at various suggested settlement sites, as well as polar albedo altering as a method of planetary engineering. This project serves as a foundational work for long term solar system exploration and settlement.
Show less - Date Issued
- 2014
- Identifier
- CFH0004540, ucf:45225
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004540
- Title
- Modeling and Transient Simulation of a Fully Integrated Multi-Pressure Heat Recovery Steam Generator Using Siemens T3000.
- Creator
-
McConnell, Jonathan, Das, Tuhin, Chow, Louis, Tian, Tian, University of Central Florida
- Abstract / Description
-
The focus of this research is on the transient thermodynamic properties and dynamic behavior of a Heat Recovery Steam Generator (HRSG). An HRSG is a crossflow heat exchanger designed for the extraction of energy from the hot exhaust gas of a traditional power plant through boiling induced phase change. Superheated steam is sent through a turbine to generate additional power, raising the overall efficiency of a power plant. The addition of renewable energies and the evolution of smart grids...
Show moreThe focus of this research is on the transient thermodynamic properties and dynamic behavior of a Heat Recovery Steam Generator (HRSG). An HRSG is a crossflow heat exchanger designed for the extraction of energy from the hot exhaust gas of a traditional power plant through boiling induced phase change. Superheated steam is sent through a turbine to generate additional power, raising the overall efficiency of a power plant. The addition of renewable energies and the evolution of smart grids have brought forth a necessity to gain a comprehensive understanding of transient behavior within an HRSG in order to efficiently manage the power output of traditional plants. Model-based techniques that can simulate a wide range of operating conditions can be valuable and insightful. For this reason, a multi-physics model of an HRSG has been developed in Siemens T3000 plant monitoring software. The layout and conditions of a reference HRSG have been provided by Siemens Energy Inc. along with validation data for behavioral comparison. The HRSG selected is a three pressure stage HRSG. Simultaneous simulation of these three pressure systems and their interactions has been achieved. A potential for real time execution was demonstrated. An HRSG is built of three major subsystems, namely economizers, boilers, and superheaters. A lumped control volume approach has been implemented to efficiently model the energy and mass balances of medium within each subsystem. In this effort, considering the goal of real time simulation, special attention was paid to balance computational burden with numerical accuracy.A major focus of this research has been accurately modeling the complexities of phase change within a boiler subsystem. A switching mechanism has been developed to numerically model the dynamic heating and evaporation of boiler liquid. To increase robustness of the model to numerical fluctuations and perturbations, bidirectional flow comprising of boiling and condensation was modeled with the switching mechanism. This numerically robust model shows good agreement with the validation data provided by Siemens.
Show less - Date Issued
- 2019
- Identifier
- CFE0007683, ucf:52459
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007683
- Title
- STRUCTURAL, ELECTRONIC, VIBRATIONAL AND THERMODYNAMICAL PROPERTIES OF SURFACES AND NANOPARTICLES.
- Creator
-
Yildirim, Handan, Rahman, Talat S., University of Central Florida
- Abstract / Description
-
The main focus of the thesis is to have better understanding of the atomic and electronic structures, vibrational dynamics and thermodynamics of metallic surfaces and bi-metallic nanoparticles (NPs) via a multi-scale simulational approach. The research presented here involves the study of the physical and chemical properties of metallic surfaces and NPs that are useful to determine their functionality in building novel materials. The study follows the ÃÂ"bottom-upÃ&...
Show moreThe main focus of the thesis is to have better understanding of the atomic and electronic structures, vibrational dynamics and thermodynamics of metallic surfaces and bi-metallic nanoparticles (NPs) via a multi-scale simulational approach. The research presented here involves the study of the physical and chemical properties of metallic surfaces and NPs that are useful to determine their functionality in building novel materials. The study follows the ÃÂ"bottom-upÃÂ" approach for which the knowledge gathered at the scale of atoms and NPs serves as a base to build, at the macroscopic scale, materials with desired physical and chemical properties. We use a variety of theoretical and computational tools with different degrees of accuracy to study problems in different time and length scales. Interactions between the atoms are derived using both Density Functional Theory (DFT) and Embedded Atom Method (EAM), depending on the scale of the problem at hand. For some cases, both methods are used for the purpose of comparison. For revealing the local contributions to the vibrational dynamics and thermodynamics for the systems possessing site-specific environments, a local approach in real-space is used, namely Real Space GreenÃÂ's Function method (RSGF). For simulating diffusion of atoms/clusters and growth on metal surfaces, Molecular Statics (MS) and Molecular Dynamics (MD) methods are employed.
Show less - Date Issued
- 2010
- Identifier
- CFE0003064, ucf:48300
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003064
- Title
- Thermodynamic Modeling and Transient Simulation of a Low-Pressure Heat Recovery Steam Generator Using Siemens T3000.
- Creator
-
Caesar, Andres, Das, Tuhin, Bhattacharya, Samik, Putnam, Shawn, University of Central Florida
- Abstract / Description
-
With world energy consumption rising, and nonrenewable energy resources quickly depleting, it is essential to design more efficient power plants and thereby economically utilize fossil fuels. To that end, this work focuses on the thermodynamic modeling of steam power systems to enhance our understanding of their dynamic and transient behavior. This thesis discusses the physical phenomena behind a heat recovery steam generator (HRSG) and develops a mathematical description of its system...
Show moreWith world energy consumption rising, and nonrenewable energy resources quickly depleting, it is essential to design more efficient power plants and thereby economically utilize fossil fuels. To that end, this work focuses on the thermodynamic modeling of steam power systems to enhance our understanding of their dynamic and transient behavior. This thesis discusses the physical phenomena behind a heat recovery steam generator (HRSG) and develops a mathematical description of its system dynamics. The model is developed from fundamentals of fluid dynamics, phase change, heat transfer, conservation laws and unsteady flow energy equations. The resulting model captures coupled physical phenomena with acceptable accuracy while achieving fast, and potentially real-time, simulations. The computational HRSG model is constructed in the Siemens T3000 platform. This work establishes the dynamic modeling capability of T3000, which has traditionally been used for programming control algorithms. The validation objective of this project is to accurately simulate the transient response of an operational steam power system. Validation of the T3000 model is carried out by comparing simulation results to start-up data from the low-pressure system of a Siemens power plant while maintaining the same inlet conditions. Simulation results well correlate with plant data regarding transient behavior and equilibrium conditions. With a comprehensive HRSG model available, it will allow for further research to take place, and aid in the advancement of steam power system technology. Some future research areas include the extension to intermediate and high-pressure system simulations, combined simulation of all three pressure stages, and continued improvement of the boiler model. In addition to enabling model-based prediction and providing further insight, this effort will also lead to controller design for improved performance.
Show less - Date Issued
- 2018
- Identifier
- CFE0007562, ucf:52599
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007562
- Title
- An Optimization of Thermodynamic Efficiency vs. Capacity for Communications Systems.
- Creator
-
Rawlins, Gregory, Wocjan, Pawel, Wahid, Parveen, Georgiopoulos, Michael, Jones, W Linwood, Mucciolo, Eduardo, University of Central Florida
- Abstract / Description
-
This work provides a fundamental view of the mechanisms which affect the power efficiency of communications processes along with a method for efficiency enhancement. Shannon's work is the definitive source for analyzing information capacity of a communications system but his formulation does not predict an efficiency relationship suitable for calculating the power consumption of a system, particularly for practical signals which may only approach the capacity limit. This work leverages...
Show moreThis work provides a fundamental view of the mechanisms which affect the power efficiency of communications processes along with a method for efficiency enhancement. Shannon's work is the definitive source for analyzing information capacity of a communications system but his formulation does not predict an efficiency relationship suitable for calculating the power consumption of a system, particularly for practical signals which may only approach the capacity limit. This work leverages Shannon's while providing additional insight through physical models which enable the calculation and improvement of efficiency for the encoding of signals. The proliferation of Mobile Communications platforms is challenging capacity of networks largely because of the ever increasing data rate at each node. This places significant power management demands on personal computing devices as well as cellular and WLAN terminals. The increased data throughput translates to shorter meantime between battery charging cycles and increased thermal footprint. Solutions are developed herein to counter this trend. Hardware was constructed to measure the efficiency of a prototypical Gaussian signal prior to efficiency enhancement. After an optimization was performed, the efficiency of the encoding apparatus increased from 3.125% to greater than 86% for a manageable investment of resources. Likewise several telecommunications standards based waveforms were also tested on the same hardware. The results reveal that the developed physical theories extrapolate in a very accurate manner to an electronics application, predicting the efficiency of single ended and differential encoding circuits before and after optimization.
Show less - Date Issued
- 2015
- Identifier
- CFE0006051, ucf:50994
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006051
- Title
- Interdiffusion and Impurity Diffusion in Magnesium Solid Solutions.
- Creator
-
Kammerer, Catherine, Sohn, Yongho, Coffey, Kevin, Suryanarayana, Challapalli, Gordon, Ali, University of Central Florida
- Abstract / Description
-
Magnesium, being lightweight, offers potential to be developed into extensive structural applications. The transportation segment has particular interest in Mg and Mg alloy for applications where reduced vehicle weight is proportional to increased fuel efficiency. Aluminum and zinc are two of the most common alloying elements in commercial Mg alloys. They improve the physical properties of Mg through solid solution strengthening and precipitation hardening. Diffusion plays a key role in the...
Show moreMagnesium, being lightweight, offers potential to be developed into extensive structural applications. The transportation segment has particular interest in Mg and Mg alloy for applications where reduced vehicle weight is proportional to increased fuel efficiency. Aluminum and zinc are two of the most common alloying elements in commercial Mg alloys. They improve the physical properties of Mg through solid solution strengthening and precipitation hardening. Diffusion plays a key role in the kinetics of and microstructural development during solidification and heat treatment. However, there is limited diffusion data available for Mg and Mg alloys. In particular, because Al is mono-isotopic, tracer diffusion data is not available. Interdiffusion of Mg solid solution with Zn also does not exist in literature. The diffusional interaction of Al and Zn in Mg solid solution at temperatures ranging from 623 (-) 723K was examined using solid-to-solid diffusion couple method. The objective of this thesis is two-fold: first, is the examination of interdiffusion in the Mg solid solution phase of the binary Mg-Al and Mg-Zn systems; second, is to explore non-conventional analytical methods to determine impurity diffusion coefficients. The quality of diffusion bonding was examined by optical microscopy and scanning electron microscopy with X-ray energy dispersive spectroscopy, and concentration profiles were determined using electron probe microanalysis with pure standards and ZAF matrix correction. Analytical methods of concentration profiles based on Boltzmann-Matano analysis for binary alloys are presented along with compositional dependent interdiffusion coefficients. As the concentration of Al or Zn approaches the dilute ends, an analytical approach based on the Hall method was employed to estimate the impurity diffusion coefficients.Zinc was observed to diffuse faster than Al, and in fact, the impurity diffusion coefficient of Al was smaller than the self-diffusion coefficient of Mg. In the Mg solid solution with Al, interdiffusion coefficients increased by an order of magnitude with an increase in Al concentration. Activation energy and pre-exponential factor for the average effective interdiffusion coefficient in Mg solid solution with Al was determined to be 186.8 KJ/mole and 7.69 x 10-1 m^2/sec. On the other hand, in the Mg solid solution with Zn, interdiffusion coefficients did not vary significantly as a function of Zn concentration. Activation energy and pre-exponential factor for the average effective interdiffusion coefficient in Mg solid solution with Zn was determined to be 129.5 KJ/mole and 2.67 x 10-4 m^2/sec. Impurity diffusion coefficients of Al in Mg was determined to have activation energy and pre-exponential factor of 144.1 KJ/mole and 1.61 x 10-4 m^2/sec. Impurity diffusion coefficients of Zn in Mg was determined to have activation energy and pre-exponential factor of 109.8 KJ/mole and 1.03 x 10-5 m^2/sec. Temperature and composition-dependence of interdiffusion coefficients and impurity diffusion coefficients are examined with respect to reported values in literature, thermodynamic factor, ?, diffusion mechanisms in hexagonal close packed structure, and experimental uncertainty.
Show less - Date Issued
- 2013
- Identifier
- CFE0004699, ucf:49851
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004699