Current Search: total nitrogen (x)
View All Items
- Title
- Comparison of a modified and traditional rapid infiltration basin for treatment and control of nutrients in wastewater effluent.
- Creator
-
Cormier, Jessica, Duranceau, Steven, Wang, Dingbao, Sadmani, A H M Anwar, University of Central Florida
- Abstract / Description
-
Rapid infiltration basins (RIB) have been historically used in Florida for groundwater recharge, effluent disposal, or a combination of both. However, this technique has proven ineffective in providing nitrogen control unless the RIB is modified in some manner. In this study, a traditional RIB was compared to a modified RIB constructed with manufactured biosorption activated media (BAM) to evaluate nitrate removal from reclaimed water. The RIBs are used for reclaimed and excess storm water...
Show moreRapid infiltration basins (RIB) have been historically used in Florida for groundwater recharge, effluent disposal, or a combination of both. However, this technique has proven ineffective in providing nitrogen control unless the RIB is modified in some manner. In this study, a traditional RIB was compared to a modified RIB constructed with manufactured biosorption activated media (BAM) to evaluate nitrate removal from reclaimed water. The RIBs are used for reclaimed and excess storm water disposal. Few, if any, studies have been published where BAM-modified RIBs have been used for this purpose. In this work, a mixture of clay, tire crumb, and sand (CTS) was selected to serve as the BAM material (Bold and Gold(TM) CTS media). Each RIB was constructed with two feet of either sand or BAM, covering more than 43,600 square feet of surface area. The BAM-modified RIB had an initial 90 pounds per cubic-foot in-place density, and the density of the control RIB approximated about 94 pounds per cubic-foot. Over an eight-month period, loadings to the BAM RIB and control RIB approximated 5.4 million gallons (MG) per acre each. Water samples, collected from lysimeters installed below the 2-foot of sand or BAM materials, were gathered monthly during 2017 (except for September and October due to the impacts of hurricane Irma); these samples were analyzed for water quality to determine nitrate removal. Soil moisture and weather data were also collected over the study period. This study demonstrated the nitrate removal effectiveness of a field-scale BAM-modified RIB as compared to a traditional field-scale sand-based RIB. Results suggest that BAM removed 30 percent more nitrates than the Control (78% and 47%, respectively) under the conditions of the study. Furthermore, BAM removed higher percentages of TN (31%) and TP (62%) than the Control (12% and 28%, respectively).
Show less - Date Issued
- 2018
- Identifier
- CFE0007566, ucf:52583
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007566
- Title
- An Assessment of Biosorption Activated Media for the Removal of Pollutants in Up-Flow Stormwater Treatment Systems.
- Creator
-
Hood, Andrew, Randall, Andrew, Wanielista, Martin, Chopra, Manoj, O'Reilly, Andrew, Moore, Sean, University of Central Florida
- Abstract / Description
-
Nitrogen and phosphorus are often the limiting nutrients for marine and freshwater systems respectively. Additionally, stormwater often contains elevated levels of pathogens which can pollute the receiving water body and impact reuse applications [1-4]. The reduction of limiting nutrients and pathogens is a common primary target for stormwater best management practices (BMPs) [5]. Traditional BMPs, such as retention/detention treatment ponds require large footprints and may not be practical...
Show moreNitrogen and phosphorus are often the limiting nutrients for marine and freshwater systems respectively. Additionally, stormwater often contains elevated levels of pathogens which can pollute the receiving water body and impact reuse applications [1-4]. The reduction of limiting nutrients and pathogens is a common primary target for stormwater best management practices (BMPs) [5]. Traditional BMPs, such as retention/detention treatment ponds require large footprints and may not be practical in ultra-urban environments where above ground space is limited. Upflow filters utilizing biosorption activated media (BAM) that can be placed underground offer a small footprint alternative. Additionally, BAM upflow filters can be installed at the discharge point of traditional stormwater ponds to provide further treatment. This research simulated stormwater that had already been treated for solids removal; thus, most of the nutrients and solids in the influent were assumed to be as non-settable suspended solids or dissolved solids. Three different BAM mixtures in an upflow filter configuration were compared for the parameters of nitrogen, phosphorus, total coliform, E. coli, and heterotrophic plate count (HPC). Additionally, genetic testing was conducted using Polymerase Chain Reaction (PCR), in conjunction with a nitrogen mass balance, to determine if Anammox was a significant player in the nitrogen removal. The columns were run at both 22-minute and 220-minute Empty Bed Contact Times (EBCTs). All the BAM mixtures analyzed were shown to be capable at the removal of nitrogen, phosphorus, and total coliform during both the 22-minute and 220-minute EBCTs, with BAM #1 having the highest removal performance for all three parameters during both EBCTs. All BAM mixtures experienced an increase in HPC. Additionally, PCR analysis confirmed the presence of Anammox in the biofilm and via mass balance it was determined that the biological nitrogen removal was due to Anammox and endogenous denitrification with Anammox being a significant mechanism.
Show less - Date Issued
- 2019
- Identifier
- CFE0007817, ucf:52875
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007817