Current Search: traffic analysis zones (x)
View All Items
- Title
- Integrating the macroscopic and microscopic traffic safety analysis using hierarchical models.
- Creator
-
Cai, Qing, Abdel-Aty, Mohamed, Eluru, Naveen, Hasan, Samiul, Lee, JaeYoung, Yan, Xin, University of Central Florida
- Abstract / Description
-
Crash frequency analysis is a crucial tool to investigate traffic safety problems. With the objective of revealing hazardous factors which would affect crash occurrence, crash frequency analysis has been undertaken at the macroscopic and microscopic levels. At the macroscopic level, crashes from a spatial aggregation (such as traffic analysis zone or county) are considered to quantify the impacts of socioeconomic and demographic characteristics, transportation demand and network attributes so...
Show moreCrash frequency analysis is a crucial tool to investigate traffic safety problems. With the objective of revealing hazardous factors which would affect crash occurrence, crash frequency analysis has been undertaken at the macroscopic and microscopic levels. At the macroscopic level, crashes from a spatial aggregation (such as traffic analysis zone or county) are considered to quantify the impacts of socioeconomic and demographic characteristics, transportation demand and network attributes so as to provide countermeasures from a planning perspective. On the other hand, the microscopic crashes on a segment or intersection are analyzed to identify the influence of geometric design, lighting and traffic flow characteristics with the objective of offering engineering solutions (such as installing sidewalk and bike lane, adding lighting). Although numerous traffic safety studies have been conducted, still there are critical limitations at both levels. In this dissertation, several methodologies have been proposed to alleviate several limitations in the macro- and micro-level safety research. Then, an innovative method has been suggested to analyze crashes at the two levels, simultaneously. At the macro-level, the viability of dual-state models (i.e., zero-inflated and hurdle models) were explored for traffic analysis zone based pedestrian and bicycle crash analysis. Additionally, spatial spillover effects were explored in the models by employing exogenous variables from neighboring zones. Both conventional single-state model (i.e., negative binomial) and dual-state models such as zero-inflated negative binomial and hurdle negative binomial models with and without spatial effects were developed. The model comparison results for pedestrian and bicycle crashes revealed that the models that considered observed spatial effects perform better than the models that did not consider the observed spatial effects. Across the models with spatial spillover effects, the dual-state models especially zero-inflated negative binomial model offered better performance compared to single-state models. Moreover, the model results clearly highlighted the importance of various traffic, roadway, and sociodemographic characteristics of the TAZ as well as neighboring TAZs on pedestrian and bicycle crash frequency. Then, the modifiable areal unit problem for macro-level crash analysis was discussed. Macro-level traffic safety analysis has been undertaken at different spatial configurations. However, clear guidelines for the appropriate zonal system selection for safety analysis are unavailable. In this study, a comparative analysis was conducted to determine the optimal zonal system for macroscopic crash modeling considering census tracts (CTs), traffic analysis zones (TAZs), and a newly developed traffic-related zone system labeled traffic analysis districts (TADs). Poisson lognormal models for three crash types (i.e., total, severe, and non-motorized mode crashes) were developed based on the three zonal systems without and with consideration of spatial autocorrelation. The study proposed a method to compare the modeling performance of the three types of geographic units at different spatial configuration through a grid based framework. Specifically, the study region was partitioned to grids of various sizes and the model prediction accuracy of the various macro models was considered within these grids of various sizes. These model comparison results for all crash types indicated that the models based on TADs consistently offer a better performance compared to the others. Besides, the models considering spatial autocorrelation outperformed the ones that do not consider it. Finally, based on the modeling results, it is recommended to adopt TADs for transportation safety planning.After determining the optimal traffic safety analysis zonal system, further analysis was conducted for non-motorist crashes (pedestrian and bicycle crashes). This study contributed to the literature on pedestrian and bicyclist safety by building on the conventional count regression models to explore exogenous factors affecting pedestrian and bicyclist crashes at the macroscopic level. In the traditional count models, effects of exogenous factors on non-motorist crashes were investigated directly. However, the vulnerable road users' crashes are collisions between vehicles and non-motorists. Thus, the exogenous factors can affect the non-motorist crashes through the non-motorists and vehicle drivers. To accommodate for the potentially different impact of exogenous factors we converted the non-motorist crash counts as the product of total crash counts and proportion of non-motorist crashes and formulated a joint model of the negative binomial (NB) model and the logit model to deal with the two parts, respectively. The formulated joint model was estimated using non-motorist crash data based on the Traffic Analysis Districts (TADs) in Florida. Meanwhile, the traditional NB model was also estimated and compared with the joint model. The results indicated that the joint model provides better data fit and could identify more significant variables. Subsequently, a novel joint screening method was suggested based on the proposed model to identify hot zones for non-motorist crashes. The hot zones of non-motorist crashes were identified and divided into three types: hot zones with more dangerous driving environment only, hot zones with more hazardous walking and cycling conditions only, and hot zones with both. At the microscopic level, crash modeling analysis was conducted for road facilities. This study, first, explored the potential macro-level effects which are always excluded or omitted in the previous studies. A Bayesian hierarchical model was proposed to analyze crashes on segments and intersection incorporating the macro-level data, which included both explanatory variables and total crashes of all segments and intersections. Besides, a joint modeling structure was adopted to consider the potentially spatial autocorrelation between segments and their connected intersections. The proposed model was compared with three other models: a model considering micro-level factors only, one hierarchical model considering macro-level effects with random terms only, and one hierarchical model considering macro-level effects with explanatory variables. The results indicated that models considering macro-level effects outperformed the model having micro-level factors only, which supports the idea to consider macro-level effects for micro-level crash analysis. Besides, the micro-level models were even further enhanced by the proposed model. Finally, significant spatial correlation could be found between segments and their adjacent intersections, supporting the employment of the joint modeling structure to analyze crashes at various types of road facilities. In addition to the separated analysis at either the macro- or micro-level, an integrated approach has been proposed to examine traffic safety problems at the two levels, simultaneously. If conducted in the same study area, the macro- and micro-level crash analyses should investigate the same crashes but aggregating the crashes at different levels. Hence, the crash counts at the two levels should be correlated and integrating macro- and micro-level crash frequency analyses in one modeling structure might have the ability to better explain crash occurrence by realizing the effects of both macro- and micro-level factors. This study proposed a Bayesian integrated spatial crash frequency model, which linked the crash counts of macro- and micro-levels based on the spatial interaction. In addition, the proposed model considered the spatial autocorrelation of different types of road facilities (i.e., segments and intersections) at the micro-level with a joint modeling structure. Two independent non-integrated models for macro- and micro-levels were also estimated separately and compared with the integrated model. The results indicated that the integrated model can provide better model performance for estimating macro- and micro-level crash counts, which validates the concept of integrating the models for the two levels. Also, the integrated model provides more valuable insights about the crash occurrence at the two levels by revealing both macro- and micro-level factors. Subsequently, a novel hotspot identification method was suggested, which enables us to detect hotspots for both macro- and micro-levels with comprehensive information from the two levels. It is expected that the proposed integrated model and hotspot identification method can help practitioners implement more reasonable transportation safety plans and more effective engineering treatments to proactively enhance safety.
Show less - Date Issued
- 2017
- Identifier
- CFE0006724, ucf:51891
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006724
- Title
- MACROSCOPIC TRAFFIC SAFETY ANALYSIS BASED ON TRIP GENERATION CHARACTERISTICS.
- Creator
-
Siddiqui, Chowdhury, Abdel-Aty, Mohamed, University of Central Florida
- Abstract / Description
-
Recent research has shown that incorporating roadway safety in transportation planning has been considered one of the active approaches to improve safety. Aggregate level analysis for predicting crash frequencies had been contemplated to be an important step in this process. As seen from the previous studies various categories of predictors at macro level (census blocks, traffic analysis zones, census tracts, wards, counties and states) have been exhausted to find appropriate correlation with...
Show moreRecent research has shown that incorporating roadway safety in transportation planning has been considered one of the active approaches to improve safety. Aggregate level analysis for predicting crash frequencies had been contemplated to be an important step in this process. As seen from the previous studies various categories of predictors at macro level (census blocks, traffic analysis zones, census tracts, wards, counties and states) have been exhausted to find appropriate correlation with crashes. This study contributes to this ongoing macro level road safety research by investigating various trip productions and attractions along with roadway characteristics within traffic analysis zones (TAZs) of four counties in the state of Florida. Crashes occurring in one thousand three hundred and forty-nine TAZs in Hillsborough, Citrus, Pasco, and Hernando counties during the years 2005 and 2006 were examined in this study. Selected counties were representative from both urban and rural environments. To understand the prevalence of various trip attraction and production rates per TAZ the Euclidian distances between the centroid of a TAZ containing a particular crash and the centroid of the ZIP area containing the at fault driver's home address for that particular crash was calculated. It was found that almost all crashes in Hernando and Citrus County for the years 2005-2006 took place in about 27 miles radius centering at the at-fault drivers' home. Also about sixty-two percent of crashes occurred approximately at a distance of between 2 and 10 miles from the homes of drivers who were at fault in those crashes. These results gave an indication that home based trips may be more associated with crashes and later trip related model estimates which were found significant at 95% confidence level complied with this hypothesized idea. Previous aggregate level road safety studies widely addressed negative binomial distribution of crashes. Properties like non-negative integer counts, non-normal distribution, over-dispersion in the data have increased suitability of applying the negative binomial technique and has been selected to build crash prediction models in this research. Four response variables which were aggregated at TAZ-level were total number of crashes, severe (fatal and severe injury) crashes, total crashes during peak hours, and pedestrian and bicycle related crashes. For each response separate models were estimated using four different sets of predictors which are i) various trip variables, ii) total trip production and total trip attraction, iii) road characteristics, and iv) finally considering all predictors into the model. It was found that the total crash model and peak hour crash model were best estimated by the total trip productions and total trip attractions. On the basis of log-likelihoods, deviance value/degree of freedom, and Pearson Chi-square value/degree of freedom, the severe crash model was best fit by the trip related variables only and pedestrian and bicycle related crash model was best fit by the road related variables only. The significant trip related variables in the severe crash models were home-based work attractions, home-based shop attractions, light truck productions, heavy truck productions, and external-internal attractions. Only two variables- sum of roadway segment lengths with 35 mph speed limit and number of intersections per TAZ were found significant for pedestrian and bicycle related crash model developed using road characteristics only. The 1349 TAZs were grouped into three different clusters based on the quartile distribution of the trip generations and were termed as less-tripped, moderately-tripped, and highly-tripped TAZs. It was hypothesized that separate models developed for these clusters would provide a better fit as the clustering process increases the homogeneity within a cluster. The cluster models were re-run using the significant predictors attained from the joint models and were compared with the previous sets of models. However, the differences in the model fits (in terms of Alkaike's Information Criterion values) were not significant. This study points to different approaches when predicting crashes at the zonal level. This research is thought to add to the literature on macro level crash modeling research by considering various trip related data into account as previous studies in zone level safety have not explicitly considered trip data as explanatory covariates.
Show less - Date Issued
- 2009
- Identifier
- CFE0002871, ucf:48029
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002871
- Title
- Development of Traffic Safety Zones and Integrating Macroscopic and Microscopic Safety Data Analytics for Novel Hot Zone Identification.
- Creator
-
Lee, JaeYoung, Abdel-Aty, Mohamed, Radwan, Ahmed, Nam, Boo Hyun, Kuo, Pei-Fen, Choi, Keechoo, University of Central Florida
- Abstract / Description
-
Traffic safety has been considered one of the most important issues in the transportation field. With consistent efforts of transportation engineers, Federal, State and local government officials, both fatalities and fatality rates from road traffic crashes in the United States have steadily declined from 2006 to 2011.Nevertheless, fatalities from traffic crashes slightly increased in 2012 (NHTSA, 2013). We lost 33,561 lives from road traffic crashes in the year 2012, and the road traffic...
Show moreTraffic safety has been considered one of the most important issues in the transportation field. With consistent efforts of transportation engineers, Federal, State and local government officials, both fatalities and fatality rates from road traffic crashes in the United States have steadily declined from 2006 to 2011.Nevertheless, fatalities from traffic crashes slightly increased in 2012 (NHTSA, 2013). We lost 33,561 lives from road traffic crashes in the year 2012, and the road traffic crashes are still one of the leading causes of deaths, according to the Centers for Disease Control and Prevention (CDC). In recent years, efforts to incorporate traffic safety into transportation planning has been made, which is termed as transportation safety planning (TSP). The Safe, Affordable, Flexible Efficient, Transportation Equity Act (-) A Legacy for Users (SAFETEA-LU), which is compliant with the United States Code, compels the United States Department of Transportation to consider traffic safety in the long-term transportation planning process. Although considerable macro-level studies have been conducted to facilitate the implementation of TSP, still there are critical limitations in macroscopic safety studies are required to be investigated and remedied. First, TAZ (Traffic Analysis Zone), which is most widely used in travel demand forecasting, has crucial shortcomings for macro-level safety modeling. Moreover, macro-level safety models have accuracy problem. The low prediction power of the model may be caused by crashes that occur near the boundaries of zones, high-level aggregation, and neglecting spatial autocorrelation.In this dissertation, several methodologies are proposed to alleviate these limitations in the macro-level safety research. TSAZ (Traffic Safety Analysis Zone) is developed as a new zonal system for the macroscopic safety analysis and nested structured modeling method is suggested to improve the model performance. Also, a multivariate statistical modeling method for multiple crash types is proposed in this dissertation. Besides, a novel screening methodology for integrating two levels is suggested. The integrated screening method is suggested to overcome shortcomings of zonal-level screening, since the zonal-level screening cannot take specific sites with high risks into consideration. It is expected that the integrated screening approach can provide a comprehensive perspective by balancing two aspects: macroscopic and microscopic approaches.
Show less - Date Issued
- 2014
- Identifier
- CFE0005195, ucf:50653
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005195
- Title
- Applying Machine Learning Techniques to Analyze the Pedestrian and Bicycle Crashes at the Macroscopic Level.
- Creator
-
Rahman, Md Sharikur, Abdel-Aty, Mohamed, Eluru, Naveen, Hasan, Samiul, Yan, Xin, University of Central Florida
- Abstract / Description
-
This thesis presents different data mining/machine learning techniques to analyze the vulnerable road users' (i.e., pedestrian and bicycle) crashes by developing crash prediction models at macro-level. In this study, we developed data mining approach (i.e., decision tree regression (DTR) models) for both pedestrian and bicycle crash counts. To author knowledge, this is the first application of DTR models in the growing traffic safety literature at macro-level. The empirical analysis is based...
Show moreThis thesis presents different data mining/machine learning techniques to analyze the vulnerable road users' (i.e., pedestrian and bicycle) crashes by developing crash prediction models at macro-level. In this study, we developed data mining approach (i.e., decision tree regression (DTR) models) for both pedestrian and bicycle crash counts. To author knowledge, this is the first application of DTR models in the growing traffic safety literature at macro-level. The empirical analysis is based on the Statewide Traffic Analysis Zones (STAZ) level crash count data for both pedestrian and bicycle from the state of Florida for the year of 2010 to 2012. The model results highlight the most significant predictor variables for pedestrian and bicycle crash count in terms of three broad categories: traffic, roadway, and socio demographic characteristics. Furthermore, spatial predictor variables of neighboring STAZ were utilized along with the targeted STAZ variables in order to improve the prediction accuracy of both DTR models. The DTR model considering spatial predictor variables (spatial DTR model) were compared without considering spatial predictor variables (aspatial DTR model) and the models comparison results clearly found that spatial DTR model is superior model compared to aspatial DTR model in terms of prediction accuracy. Finally, this study contributed to the safety literature by applying three ensemble techniques (Bagging, Random Forest, and Boosting) in order to improve the prediction accuracy of weak learner (DTR models) for macro-level crash count. The model's estimation result revealed that all the ensemble technique performed better than the DTR model and the gradient boosting technique outperformed other competing ensemble technique in macro-level crash prediction model.
Show less - Date Issued
- 2018
- Identifier
- CFE0007358, ucf:52103
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007358