Current Search: two-photon absorption (x)
View All Items
Pages
- Title
- Photophysics of Organic Probes and their Applications in Bioimaging (&) Photodynamic Therapy.
- Creator
-
Kim, Bosung, Belfield, Kevin, Zou, Shengli, Campiglia, Andres, Frazer, Andrew, Ali, Gul Shad, University of Central Florida
- Abstract / Description
-
Over the past several decades the phenomenon of luminescence (divided into fluorescence and phosphorescence) has received great attention in the field of biological science. This quest has motivated scientists for a variety of applications, including fluorescence imaging. Fluorescence microscopy techniques that provide unique advantages, such as high spatial resolution and superior sensitivity, have been regarded as attractive tools in biophotonics. With the progress of ultrafast laser...
Show moreOver the past several decades the phenomenon of luminescence (divided into fluorescence and phosphorescence) has received great attention in the field of biological science. This quest has motivated scientists for a variety of applications, including fluorescence imaging. Fluorescence microscopy techniques that provide unique advantages, such as high spatial resolution and superior sensitivity, have been regarded as attractive tools in biophotonics. With the progress of ultrafast laser sources, two-photon absorption (2PA), in which a molecule absorbs two photons simultaneously, has opened possibilities of using it for various applications. Two-photon fluorescence microscopy (2PFM), which affords deeper tissue penetration and excellent three-dimensional (3D) images, is now being widely employed for bioimaging. This dissertation focuses on the design, synthesis, and photophysical characterization of new fluorophores, as well as desirable applications. Chapter 1 gives an account of a brief introduction of luminescence and 2PA, as well as their utilities in biological applications. In chapter 2, a series of new BODIPY derivatives are presented along with their comprehensive linear and nonlinear characteristics. They exhibited excellent photophysical properties including large extinction coefficients, high fluorescence quantum yields, good photostability, and reasonable two-photon absorption cross sections. Two promising compounds were further evaluated as NIR fluorescent probes in one-photon and two-photon fluorescence imaging. Chapter 3 provides the design, synthesis, and photophysical characterization of two BODIPY dyes. In order to assess the potential of using the dye as a fluorescent probe, Lysotracker Red, a commercial lysosomal marker, was investigated for comparison purposes. The results indicate that figure of merit of both compounds were three orders of magnitude higher than that of Lysotracker Red. With an eye towards applications, one of the compounds was encapsulated in silica-based nanoparticles for in vitro and ex vivo one-photon and two-photon fluorescence imaging, in which the surface of the nanoparticle was modified with RGD peptides for specific targeting. The nanoprobe exhibited good biocompatibility and highly selective RGD-mediated uptake in ?V?3 integrin-overexpressing cancers, while maintaining efficient fluorescence quantum yield and high photostability. In chapter 4, the synthesis and photophysical properties of a novel photosensitizer with heavy atoms (halogen) were presented. The dye exhibited low fluorescence quantum yield, resulting in high singlet oxygen generation quantum yield. In vitro photodynamic studies demonstrated that photosensitization of the agent can induce cellular damage, subsequently leading to cell death by a necrotic cell death mechanism, supporting the therapeutic potential of using the agent for photodynamic therapy.
Show less - Date Issued
- 2015
- Identifier
- CFE0006041, ucf:50977
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006041
- Title
- SQUARAINE DYES FOR TWO-PHOTON FLUORESCENCE BIOIMAGING APPLICATIONS.
- Creator
-
Colon Gomez, Maria, Belfield, Kevin, University of Central Florida
- Abstract / Description
-
Near-infrared emitting squaraine dyes are promising candidates for bioimaging applications. Two-photon fluorescence microscopy (2PFM) imaging is a powerful tool being used for studying biological function since it produces 3D images with minimal damage to cells and lower fluorophore photobleaching. The fluorescence wavelength of squaraine dyes normally falls in the near infrared region, providing deeper penetration through biological samples such as thick tissue sections. Squaraine dyes that...
Show moreNear-infrared emitting squaraine dyes are promising candidates for bioimaging applications. Two-photon fluorescence microscopy (2PFM) imaging is a powerful tool being used for studying biological function since it produces 3D images with minimal damage to cells and lower fluorophore photobleaching. The fluorescence wavelength of squaraine dyes normally falls in the near infrared region, providing deeper penetration through biological samples such as thick tissue sections. Squaraine dyes that could work for imaging cells and tissues for 2PFM imaging were synthesized and underwent comprehensive photophysical characterization, such as UV-Vis absorption, fluorescence, and anisotropy. The squaraine dyes were tested for cell toxicity to determine the concentration at which the cells should be incubated with the dye for 2PFM. In addition, the squaraine dyes were incubated with cancer cells to evaluate their utility in the bioimaging process. The squaraine dye that is not soluble in water can be incorporated in silica nanoparticles or micelles to facilitate dispersal in water for evaluation of its use as a probe. The prospective squaraine dyes can be used in cells and tissues for imaging that can then be analyzed to ascertain its use as a probe for biomedical applications, such as early cancer detection.
Show less - Date Issued
- 2013
- Identifier
- CFH0004338, ucf:45020
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004338
- Title
- Structure-Property Relationship of the Two-Photon Circular Dichroism of Compounds with Axial and Helical Chirality.
- Creator
-
Diaz, Carlos, Hernandez, Florencio, Uribe Romo, Fernando, Kuebler, Stephen, Masunov, Artem, Del Barco, Enrique, University of Central Florida
- Abstract / Description
-
Back in 1894 Lord Kelvin coined the term (")chiral(") in order to refer to molecules whose mirror images were not superimposable with themselves. Over the years, research has demonstrated the important role that chiral molecules play in life, chemistry, and biology as well as their importance in the development of new drugs and technologies.The efforts to understand chiral systems have been mainly driven by spectroscopic methods that leverage on the opposite responses that enantiomers have to...
Show moreBack in 1894 Lord Kelvin coined the term (")chiral(") in order to refer to molecules whose mirror images were not superimposable with themselves. Over the years, research has demonstrated the important role that chiral molecules play in life, chemistry, and biology as well as their importance in the development of new drugs and technologies.The efforts to understand chiral systems have been mainly driven by spectroscopic methods that leverage on the opposite responses that enantiomers have to linear or circularly polarized light of both handedness. More specifically, Electronic Circular Dichroism (ECD) which measures the differences in linear absorption of left and right circularly polarized light has been the method par excellence for the spectroscopic characterization of chiral compounds. Unfortunately, the fact that ECD is based on linear absorption severely limits the use of this method in the near to far UV region. This is mainly due to the interferences generated by the strong linear absorption of common organic solvents and buffers in this portion of the light spectrum. Nevertheless, the fact remains that many chiral biomolecules of interest related to deceases like Alzheimer and Parkinson, exhibit most of their linear absorption in the near to far UV region where ECD cannot be employed for their study. Therefore, it has become an urgent necessity to develop spectroscopic methods to study chiral molecules that can circumvent the limitations of ECD at shorter wavelengths. In order to overcome the existent limitations in linear chiral spectroscopy, the nonlinear equivalent of ECD arises as a promising alternative, i.e. Two-Photon Circular Dichroism (TPCD). Although, this phenomenon was theoretically predicted in 1975, it was not until 2008, with the introduction of the double-L scan, that a reliable and versatile method for the measurement of TPCD was introduced. The high sensitivity of this method is based on the use of (")twin(") pulses that allow accounting for fluctuations in the excitation source that prevented the experimental realization of the measurement. The first measurement of a full TPCD spectrum was performed on BINOL enantiomers and the results were supported and discussed with the help of theoretical calculations. After that seminal work, we embarked in expanding the understanding of the structure-property relationship of TPCD by performing, systematically, a series of theoretical-experimental studies in chiral biaryl derivatives and compounds with helical chirality.In Chapter 2 we present the theoretical-experimental study of the effect of the ?-electron delocalization curvature on the TPCD of molecules with axial chirality. The targeted molecules for this part of our investigation were S-BINOL, S-VANOL, and S-VAPOL. Our findings revealed that an increase in the TPCD signal, within this series of compounds, was related to the curvature of the ?(-)electron delocalization. The contributions of the different transition moments to the two-photon rotatory strength support our outcomes. Then, in Chapter 3 we introduce the development of the Fragment-Recombination Approach (FRA) for the calculation of the TPCD spectra of large molecules. This simple but powerful method is based on the additivity of the TPCD signal, and is subject to a strict conditional fragmentation approach. FRA-TPCD is demonstrated, theoretically, in two hypothetical molecular systems from the biaryl derivatives family. Afterward, in Chapter 4 we show the first experimental demonstration of FRA-TPCD through the conformational analysis of an axially-chiral Salen ligand in solution (AXF-155). The FRA-TPCD spectra calculated for the different isomers of AXF-155 allowed narrowing the number of possible isomers of this complex molecule in THF solution to only two. This represents a significant improvement from previously reported results using ECD. Subsequently, in Chapter 5 we present the study of the effect of intramolecular charge transfer (ICT) in S-BINAP, an axially dissymmetric diphosphine ligand with strong ICT. The evaluation of the performance of two different exchange-correlation functional (XCF) confirmed that in order to properly predict the theoretical TPCD spectrum of a molecule exhibiting strong ICT, it is required to use an XCF such as CAM-B3LYP. In addition, our findings revealed the importance of considering an adequate number of excited states in order to be able to fully reproduce the experimental TPCD spectrum, thus avoiding wrong assignments of theoretical transitions to experimental spectral features. Finally, and expanding on our previous study, in Chapter 6 we investigated the effect of the nature of ICT on two hexahelicene derivatives. Our investigation demonstrated that the TPCD signal of chiral molecules with strong ICT does not only depend on the strength of this effect but on its nature, i.e. extension of the ?(-)electronic delocalization increasing beyond (EXO-ICT) or within (ENDO-ICT) the helicene core. In summary, with the results presented in this thesis we closed a first loop in the understanding of the structure-property relationship of TPCD. In the future, we expect to deepen in our knowledge of the structure-property relationship of this phenomenon by studying further helicene derivatives with donor-acceptor motif, and through the application of FRA-TPCD to the conformational analysis of amino acids in peptides. We foresee numerous applications of TPCD for the study of optically active molecules with implications in biology, medicine, and the drug and food industry, and applications in nanotechnology, asymmetric catalysis and photonics.
Show less - Date Issued
- 2015
- Identifier
- CFE0005787, ucf:50067
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005787
- Title
- Non-Degenerate Two Photon Gain in Bulk Gallium Arsenide.
- Creator
-
Turnbull, Brendan, Hagan, David, Vanstryland, Eric, Christodoulides, Demetrios, University of Central Florida
- Abstract / Description
-
The purpose of this thesis is to investigate the nonlinear phenomena known as doubly-stimulated, non-degenerate two-photon emission (ND-2PE) in Gallium Arsenide (GaAs). 2PE refers to the simultaneous emission of two-photons as electrons move from the conduction band in a direct gap semiconductor to the valence band. Following the same path for describing one-photon emission (1PE) we describe 2PE as a product of the irradiance, I, and the negative of the loss which in this case is two-photon...
Show moreThe purpose of this thesis is to investigate the nonlinear phenomena known as doubly-stimulated, non-degenerate two-photon emission (ND-2PE) in Gallium Arsenide (GaAs). 2PE refers to the simultaneous emission of two-photons as electrons move from the conduction band in a direct gap semiconductor to the valence band. Following the same path for describing one-photon emission (1PE) we describe 2PE as a product of the irradiance, I, and the negative of the loss which in this case is two-photon absorption, ?_2, the negative coming from the population inversion. We attempt to observe 2PE by using a frequency non-degenerate pump-probe experiment in which a third beam optically excites a 4 (&)#181;m thick GaAs sample. We use non-degenerate beams in hopes of utilizing the 3-orders of magnitude enhancement seen in two-photon absorption (2PA) by going to extreme nondegeneracy (END) to enhance 2PE. GaAs is chosen due to the availability of the appropriate wavelengths, the maturity of the GaAs technology, its use in optoelectronic devices and its ability to be electrically pumped. During the experimental development we learn how to effectively etch and manipulate thin GaAs samples and model the transmission spectrum of these samples using thin film transmission matrices. We are able to match the measured transmission spectrum with the theoretical transmission spectrum. Here we etch the bulk GaAs left on the sample leaving only the 4 (&)#181;m thickness of molecular beam epitaxial grown GaAs plus additional layers of aluminum gallium arsenide (AlGaAs). These samples were grown for us by Professor Gregory Salamo of the University of Arkansas.Using the pump-probe experiment on the 4 (&)#181;m GaAs sample, we measure the change of the 2PA due to the presence of optically excited carriers. The goal is to reduce the 2PA signal to zero and then invert the 2PA signal indicating an increase in transmission indicative of 2PE when the population is inverted. Our results show that we achieve a 45% reduction in the 2PA signal in a 4 ?m thick GaAs sample due to the excited carriers. Unfortunately, we currently cannot experimentally determine whether the reduction is strictly due to free-carrier absorption (FCA) of our pump or possibly due to a change in the two-photon absorption coefficient. We measure the transmission of various wavelengths around the bang gap of GaAs as a function of excitation wavelength and achieve a transmittance of ~80% which we attribute to possibly be one photon gain (1PG) at 880 nm. We also go to cryogenic temperatures to concentrate the carriers near the bottom of the conduction band and improve the theoretical gain coefficient for 2PE. Unfortunately, we do not observe a measurable change in 2PA with the addition of optically excited carriers. Along with FCA of our infrared pump we suspect that the difficulties in this first set of experiments are also a result or radiative recombination due to amplified spontaneous emission reducing our free carrier density along with the fact that 4 ?m is too thick for uniform excitation. We now have 1 ?m samples from Professor Gregory Salamo which we hope will give better and more definitive results.
Show less - Date Issued
- 2013
- Identifier
- CFE0004762, ucf:49776
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004762
- Title
- MOLECULAR STRUCTURE NONLINEAR OPTICAL PROPERTY RELATIONSHIPS FOR A SERIES OF POLYMETHINE AND SQUARAINE MOLECULES.
- Creator
-
Fu, Jie, Van Stryland, Eric, University of Central Florida
- Abstract / Description
-
This dissertation reports on the investigation of the relationships between molecular structure and two-photon absorption (2PA) properties for a series of polymethine and squaraine molecules. Current and emerging applications exploiting the quadratic dependence upon laser intensity, such as two-photon fluorescence imaging, three-dimensional microfabrication, optical data storage and optical limiting, have motivated researchers to find novel materials exhibiting strong 2PA. Organic materials...
Show moreThis dissertation reports on the investigation of the relationships between molecular structure and two-photon absorption (2PA) properties for a series of polymethine and squaraine molecules. Current and emerging applications exploiting the quadratic dependence upon laser intensity, such as two-photon fluorescence imaging, three-dimensional microfabrication, optical data storage and optical limiting, have motivated researchers to find novel materials exhibiting strong 2PA. Organic materials are promising candidates because their linear and nonlinear optical properties can be optimized for applications by changing their structures through molecular engineering. Polymethine and squaraine dyes are particularly interesting because they are fluorescent and showing large 2PA. We used three independent nonlinear spectroscopic techniques (Z-scan, two-photon fluorescence and white-light continuum pump-probe spectroscopy) to obtain the 2PA spectra revealing 2PA bands, and we confirm the experimental data by comparing the results from the different methods mentioned. By systematically altering the structure of polyemthines and squaraines, we studied the effects of molecular symmetry, strength of donor terminal groups, conjugation length of the chromophore chain, polarity of solvents, and the effects of placing bridge molecules inside the chromophore chain on the 2PA properties. We also compared polymethine, squaraine, croconium and tetraon dyes with the same terminal groups to study the effects of the different additions inserted within the chromophore chain on their optical properties. Near IR absorbing squaraine dyes were experimentally observed to show extremely large 2PA cross sections ( 30000GM). A simplified three-level model was used to fit the measured 2PA spectra and detailed quantum chemical calculations revealed the reasons for the squaraine to exhibit strong 2PA. In addition, two-photon excitation fluorescence anisotropy spectra were measured through multiple 2PA transitions. A theoretical model based on four-levels with two intermediate states was derived and used for analysis of the experimental data.
Show less - Date Issued
- 2006
- Identifier
- CFE0001350, ucf:46967
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001350
- Title
- Mode-locked Laser Based on Large Core Yb3+-Doped Fiber.
- Creator
-
Jia, Fei, Amezcua Correa, Rodrigo, Schulzgen, Axel, Fathpour, Sasan, University of Central Florida
- Abstract / Description
-
The thesis reviews principle of laser cavity and gives a general introduction to mode-locked laser (MLL). By using Yb3+-doped fiber as gain medium, passive MLL cavity is developed in experiment, aiming to obtain femtosecond pulses with high pump power from 25W to 35W. The gain medium fiber with 65(&)#181;m core diameter is cleaved with one flat end and another angled. Pump laser with 976nm wavelength is coupled into Yb3+-doped fiber to excite signal from 1020nm to 1040nm in the core. 9W is...
Show moreThe thesis reviews principle of laser cavity and gives a general introduction to mode-locked laser (MLL). By using Yb3+-doped fiber as gain medium, passive MLL cavity is developed in experiment, aiming to obtain femtosecond pulses with high pump power from 25W to 35W. The gain medium fiber with 65(&)#181;m core diameter is cleaved with one flat end and another angled. Pump laser with 976nm wavelength is coupled into Yb3+-doped fiber to excite signal from 1020nm to 1040nm in the core. 9W is threshold for laser setup. After locking all modes, picosecond pulses are output from laser cavity and coupled into dispersion delay fiber. By compressing pulse width, pulses are in soliton mode and then femtosecond laser pulses are obtained pulses are obtained. To measure ultrafast pulse width effectively, an auto-correlator based on Mach(-)Zehnder interferometer is developed. In the receiver terminal, a photodiode with range 320 nm to 1000 nm is used to detect signal and two photon absorption (TPA) method is applied.
Show less - Date Issued
- 2018
- Identifier
- CFE0007199, ucf:52249
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007199
- Title
- Application of Two-Photon Absorbing Fluorene-Containing Compounds in Bioimaging and Photodyanimc Therapy.
- Creator
-
Yue, Xiling, Belfield, Kevin, Campiglia, Andres, Miles, Delbert, Frazer, Andrew, Cheng, Zixi, University of Central Florida
- Abstract / Description
-
Two-photon absorbing (2PA) materials has been widely studied for their highly localized excitation and nonlinear excitation efficiency. Application of 2PA materials includes fluorescence imaging, microfabrication, 3D data storage, photodynamic therapy, etc. Many materials have good 2PA photophysical properties, among which, the fluorenyl structure and its derivatives have attracted attention with their high 2PA cross-section and high fluorescence quantum yield.Herein, several compounds with...
Show moreTwo-photon absorbing (2PA) materials has been widely studied for their highly localized excitation and nonlinear excitation efficiency. Application of 2PA materials includes fluorescence imaging, microfabrication, 3D data storage, photodynamic therapy, etc. Many materials have good 2PA photophysical properties, among which, the fluorenyl structure and its derivatives have attracted attention with their high 2PA cross-section and high fluorescence quantum yield.Herein, several compounds with 2PA properties are discussed. All of these compounds contain one or two fluorenyl core units as part of the conjugated system. The aim of this dissertation is to discuss the application of these compounds according to their photophysical properties. In chapters 2 to 4, compounds were investigated for cell imaging and tissue imaging. In chapter 5, compounds were evaluated for photodynamic therapy effects on cancer cells. Chapters 2 and 3 detail compounds with quinolizinium and pyran as core structures, respectively. Fluorene was introduced into structures as substituents. Quinolizinium structures exhibited a large increase in fluorescence when binding with Bovine Serum Albumin (BSA). Further experiments in cell imaging demonstrated a fluorescence turn-on effect in cell membranes, indicating the possibility for these novel compounds to be promising membrane probes. Pyran structures were conjugated with arginylglycylaspartic acid peptide (RGD) to recognize integrin and introduced in cells and an animal model with tumors. Both probes showed specific targeting of tumor vasculature. Imaging reached penetration as deep as 350 ?m in solid tumors and exhibited good resolution. These results suggest the RGD-conjugated pyran structure should be a good candidate probe for live tissue imaging. Chapter 4 applied a fluorene core structure conjugated with RGD as well. Application of this fluorenyl probe compound is in wound healing animal models. Fluorescence was collected from vasculature and fibroblasts up to ? 1600 ?m within wound tissue in lesions made on the skin of mice. The resolution of images is also high enough to recognize cell types by immunohistochemical staining. This technology can be applied for reliable quantification and illustration of key biological processes taking place during tissue regeneration in the skin. Chapter 5 describes three fluorenyl core structures with photoacid generation properties. One of the structures showed excellent photo-induced toxicity. Cancer cells underwent necrotic cell death due to pH decrease in lysosomes and endosomes, suggesting a new mechanism for photodynamic therapy.
Show less - Date Issued
- 2014
- Identifier
- CFE0005565, ucf:50276
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005565
- Title
- Two-photon absorption in bulk semiconductors and quantum well structures and its applications.
- Creator
-
Pattanaik, Himansu, Vanstryland, Eric, Hagan, David, Delfyett, Peter, Schoenfeld, Winston, Peale, Robert, University of Central Florida
- Abstract / Description
-
The purpose of this dissertation is to provide a study and possible applications of two-photon absorption (2PA), in direct-gap semiconductors and quantum-well (QW) semiconductor structures. One application uses extremely nondegenerate (END) 2PA, for mid-infrared (mid-IR) detection in uncooled semiconductors. The use of END, where the two photons have very different energies gives strong enhancement comapared to degenerate 2PA. This END-2PA enhanced detection is also applied to mid-IR imaging...
Show moreThe purpose of this dissertation is to provide a study and possible applications of two-photon absorption (2PA), in direct-gap semiconductors and quantum-well (QW) semiconductor structures. One application uses extremely nondegenerate (END) 2PA, for mid-infrared (mid-IR) detection in uncooled semiconductors. The use of END, where the two photons have very different energies gives strong enhancement comapared to degenerate 2PA. This END-2PA enhanced detection is also applied to mid-IR imaging and light detection and ranging (LIDAR) in uncooled direct-gap photodiodes. A theoretical study of degenerate 2PA (D-2PA) in quantum wells, QWs, is presented, along with a new theory of ND 2PA in QWs is developed. Pulsed mid-IR detection of femtosecond pulses is investigated in two different semiconductor p-i-n photodiodes (GaAs and GaN). With the smaller gap materials having larger ND-2PA, it is observed that they have better sensitivity to mid-IR detection, but unwanted background from D-2PA outweighs this advantage. A comparison of responsivity and signal-to-background ratio for GaAs and GaN in END-2PA based detection is presented. END-2PA enhancement is utilized for CW IR detection in uncooled GaAs and GaN p-i-n photodiodes. The pulsed mid-IR detection experiments are further extended to perform mid-IR imaging in uncooled GaN p-i-n photodetectors. A 3-D automated scanning gated imaging system is developed to obtain 3-D mid-IR images of various objects. The gated imaging system allows simultaneous 3-D and 2-D imaging of objects. The 3-D gated imaging system described in the dissertation could be used for examination of buried structures (microchannels, defects etc.) or laser written volumetric structures and could also be suitable for in-vivo imaging applications in biology in the mid-IR spectral region. As an example, 3-D imaging of buried semiconductor structures is presented.A theoretical study of D-2PA of QWs for transverse electric (TE) and transverse magnetic (TM) fields is carried out and an analytical expression for the D-2PA coefficient in QWs using second-order perturbation theory is derived. A theory for ND-2PA in QW semiconductor using second-order perturbation theory is developed for the first time and an analytical expression for the ND-2PA coefficient for TE, TM, and the mixed case of TE and TM is derived. The shape of the 2PA curve for the D-2PA and ND-2PA for QWs in the TE case is similar to that of bulk semiconductors. As governed by the selection rules both the D-2PA and ND-2PA curves for the TE case does not show a step-like signature for the density of states of the QWs whereas 2PA curve for the TM case shows such step like sharp features. The ND-2PA coefficient for TE, TM, and the mixed case is compared with that obtained for bulk semiconductors. Large enhancement in ND-2PA of QW semiconductors for the TM case over bulk semiconductors is predicted.
Show less - Date Issued
- 2015
- Identifier
- CFE0005684, ucf:50164
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005684
- Title
- Enhanced Two-Photon Absorption in a Squaraine-Fluorene-Squaraine Dye: Design, Synthesis, Photophysical Properties, and Solvatochromic Behavior.
- Creator
-
Moreshead, William, Belfield, Kevin, Campiglia, Andres, Zou, Shengli, Frazer, Andrew, Beiler, Rosalind, University of Central Florida
- Abstract / Description
-
The discovery of any new technology is usually accompanied by a need for new or improved materials which make that technology useful in practical applications. In the case of two-photon absorption (2PA) this has truly been the case. Since its first demonstration in 1961, there has been an ever increasing quest to understand the relationships between two-photon absorption and the structure of two-photon absorbing materials. This quest has been motivated by the many applications for 2PA which...
Show moreThe discovery of any new technology is usually accompanied by a need for new or improved materials which make that technology useful in practical applications. In the case of two-photon absorption (2PA) this has truly been the case. Since its first demonstration in 1961, there has been an ever increasing quest to understand the relationships between two-photon absorption and the structure of two-photon absorbing materials. This quest has been motivated by the many applications for 2PA which have been reported, including fluorescence bioimaging, 3D microfabrication, 3D optical data storage, upconverted lasing, and photodynamic therapy.The work presented in this dissertation represents another step in the effort to better understand the structure/property relationships of 2PA. In this work a new, squaraine-fluorene-squaraine molecule, proposed through a joint effort of quantum and synthetic chemists, was synthesized and its photophysical properties were measured. The measurements included linear and two-photon photophysical properties, as well as solvatochromic behavior. Quantum calculations were done to aid in understanding those photophysical and solvatochromic properties. A single squaraine dye was also synthesized and used as a model compound to assist in understanding this new structure.In Chapter 1 an introduction to 2PA and several of its applications is given. Chapter 2 gives a background of 2PA structure/property relationships that have been reported to date, based on work done with polymethine dyes. Chapter 3 gives a full account of the synthesis, characterization, and detailed quantum chemical analyses of this new squaraine-fluorene-squaraine molecule and the corresponding model compound squaraine dye. Chapter 4 gives some additional work and suggested future directions.
Show less - Date Issued
- 2013
- Identifier
- CFE0005384, ucf:50450
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005384
- Title
- NONLINEAR ABSORPTION AND FREE CARRIER RECOMBINATION IN DIRECT GAP SEMICONDUCTORS.
- Creator
-
Olszak, Peter, Van Stryland, Eric, University of Central Florida
- Abstract / Description
-
Nonlinear absorption of Indium Antimonide (InSb) has been studied for many years, yet due to the complexity of absorption mechanisms and experimental difficulties in the infrared, this is still a subject of research. Although measurements have been made in the past, a consistent model that worked for both picosecond and nanosecond pulse widths had not been demonstrated. In this project, temperature dependent two-photon (2PA) and free carrier absorption (FCA) spectra of InSb are measured using...
Show moreNonlinear absorption of Indium Antimonide (InSb) has been studied for many years, yet due to the complexity of absorption mechanisms and experimental difficulties in the infrared, this is still a subject of research. Although measurements have been made in the past, a consistent model that worked for both picosecond and nanosecond pulse widths had not been demonstrated. In this project, temperature dependent two-photon (2PA) and free carrier absorption (FCA) spectra of InSb are measured using femtosecond, picosecond, and nanosecond IR sources. The 2PA spectrum is measured at room temperature with femtosecond pulses, and the temperature dependence of 2PA and FCA is measured at 10.6m using a nanosecond CO2 laser giving results consistent with the temperature dependent measurements at several wavelengths made with a tunable picosecond system. Measurements over this substantial range of pulse widths give results for FCA and 2PA consistent with a recent theoretical model for FCA. While the FCA cross section has been generally accepted in the past to be a constant for the temperatures and wavelengths used in this study, this model predicts that it varies significantly with temperature as well as wavelength. Additionally, the results for 2PA are consistent with the band gap scaling (Eg-3) predicted by a simple two parabolic band model. Using nanosecond pulses from a CO2 laser enables the recombination rates to be determined through nonlinear transmittance measurements. Three-photon absorption is also observed in InSb for photon energies below the 2PA band edge. Prior to this work, data on three-photon absorption (3PA) in semiconductors was scarce and most experiments were performed over narrow spectral ranges, making comparison to the available theoretical models difficult. There was also disagreement between the theoretical results generated by different models, primarily in the spectral behavior. Therefore, we studied the band gap scaling and spectra of 3PA in several semiconductors by the Z-scan technique. The 3PA coefficient is found to vary as (Eg-7), as predicted by the scaling rules of simple two parabolic band models. The spectral behavior, which is considerably more complex than for 2PA, is found to agree well with a recently published theory based on a four-band model.
Show less - Date Issued
- 2010
- Identifier
- CFE0003402, ucf:48418
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003402
- Title
- EXPERIMENTAL AND THEORETICAL APPROACHES TO CHARACTERIZATION OF ELECTRONIC NONLINEARITIES IN DIRECT-GAP SEMICONDUCTORS.
- Creator
-
Cirloganu, Claudiu, Van Stryland, Eric, University of Central Florida
- Abstract / Description
-
The general goal of this dissertation is to provide a comprehensive description of the limitations of established theories on bound electronic nonlinearities in direct-gap semiconductors by performing various experiments on wide and narrow bandgap semiconductors along with developing theoretical models. Nondegenerate two-photon absorption (2PA) is studied in several semiconductors showing orders of magnitude enhancement over the degenerate counterpart. In addition, three-photon absorption ...
Show moreThe general goal of this dissertation is to provide a comprehensive description of the limitations of established theories on bound electronic nonlinearities in direct-gap semiconductors by performing various experiments on wide and narrow bandgap semiconductors along with developing theoretical models. Nondegenerate two-photon absorption (2PA) is studied in several semiconductors showing orders of magnitude enhancement over the degenerate counterpart. In addition, three-photon absorption (3PA) is studied in ZnSe and other semiconductors and a new theory using a Kane 4-band model is developed which fits new data well. Finally, the narrow gap semiconductor InSb is studied with regard to multiphoton absorption, free-carrier nonlinearities and decay mechanisms. The non-degenerate two-photon absorption was investigated in several direct-gap semiconductors with picosecond and femtosecond pulses. Large enhancements in 2PA were demonstrated when employing highly non-degenerate photon pairs and the results were shown to be consistent to a simple 2-parabolic band theory based on a ÃÂ"dressedÃÂ" state approach. The nonlinear refractive index induced in such configurations was also calculated and possible implications of such extreme behavior are discussed. A large number of measurements of 3PA were taken at multiple wavelengths and in several semiconductors. The subsequent analysis has shown that simple 2-band model calculations (based on either perturbative or tunneling approaches) do not adequately describe the experimental trends. A more comprehensive model, based on KaneÃÂ's 4-band theory was developed and we calculate three-photon spectra for zincblende structures within the perturbative framework. We have confirmed the results of our calculations performing a series of Z-scans in semiconductors ZnSe and ZnS, yielding complete experimental three-photon spectra. A systematic approach based on using a large variety of pulse durations was needed to quantify the wealth of nonlinear optical processes in InSb, accessible in the mid-infrared range. Femtosecond pulses provided a lower limit to measurements of the instantaneous effects (absorptive and refractive), while picosecond pulses allowed further characterization of the free-carrier effects, including population dynamics in the high density regime (Auger effects). The model developed permitted us to verify the temperature dependence of free-carrier absorption recently predicted, and to successfully model optical limiting data with longer, nanosecond pulses.
Show less - Date Issued
- 2010
- Identifier
- CFE0003401, ucf:48417
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003401
- Title
- CHEMICAL STRUCTURE - NONLINEAR OPTICAL PROPERTY RELATIONSHIPS FOR A SERIES OF TWO-PHOTON ABSORBING FLUORENE MOLECULES.
- Creator
-
Hales, Joel McCajah, Van Stryland, Eric W., University of Central Florida
- Abstract / Description
-
This dissertation reports on the investigation of two-photon absorption (2PA) in a series of fluorenyl molecules. Several current and emerging technologies exploit this optical nonlinearity including two-photon fluorescence imaging, three-dimensional microfabrication, site-specific photodynamic cancer therapy and biological caging studies. The two key features of this nonlinearity which make it an ideal candidate for the above applications are its quadratic dependence on the incident...
Show moreThis dissertation reports on the investigation of two-photon absorption (2PA) in a series of fluorenyl molecules. Several current and emerging technologies exploit this optical nonlinearity including two-photon fluorescence imaging, three-dimensional microfabrication, site-specific photodynamic cancer therapy and biological caging studies. The two key features of this nonlinearity which make it an ideal candidate for the above applications are its quadratic dependence on the incident irradiance and the improved penetration into absorbing media that it affords. As a consequence of the burgeoning field which exploits 2PA, it is a goal to find materials that exhibit strong two-photon absorbing capabilities. Organic materials are promising candidates for 2PA applications because their material properties can be tailored through molecular engineering thereby facilitating optimization of their nonlinear optical properties. Fluorene derivatives are particularly interesting since they possess high photochemical stability for organic molecules and are generally strongly fluorescent. By systematically altering the structural properties in a series of fluorenyl molecules, we have determined how these changes affect their two-photon absorbing capabilities. This was accomplished through characterization of both the strength and location of their 2PA spectra. In order to ensure the validity of these results, three separate nonlinear characterization techniques were employed: two-photon fluorescence spectroscopy, white-light continuum pump-probe spectroscopy, and the Z-scan technique. In addition, full linear spectroscopic characterization was performed on these molecules along with supplementary quantum chemical calculations to obtain certain molecular properties that might impact the nonlinearity. Different designs in chemical architecture allowed investigation of the effects of symmetry, solvism, donor-acceptor strengths, conjugation length, and multi-branched geometries on the two-photon absorbing properties of these molecules. In addition, the means to enhance 2PA via intermediate state resonances was investigated. To provide plausible explanations for the experimentally observed trends, a conceptually simple three level model was employed. The subsequent correlations found between chemical structure and the linear and nonlinear optical properties of these molecules provided definitive conclusions on how to properly optimize their two-photon absorbing capabilities. The resulting large nonlinearities found in these molecules have already shown promise in a variety of the aforementioned applications.
Show less - Date Issued
- 2004
- Identifier
- CFE0000005, ucf:46103
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000005
- Title
- TWO-PHOTON 3D OPTICAL DATA STORAGE VIA FLUORESCENCE MODULATION OF FLUORENE DYES BY PHOTOCHROMIC DIARYLETHENES.
- Creator
-
Corredor, Claudia, Belfield, Kevin D., University of Central Florida
- Abstract / Description
-
Three-dimensional (3D) optical data storage based on two-photon processes provides highly confined excitation in a recording medium and a mechanism for writing and reading data with less cross talk between multiple memory layers, due to the quadratic dependence of two photon absorption (2PA) on the incident light intensity. The capacity for highly confined excitation and intrinsic 3D resolution affords immense information storage capacity (up to 1012 bits/cm3). Recently, the use of...
Show moreThree-dimensional (3D) optical data storage based on two-photon processes provides highly confined excitation in a recording medium and a mechanism for writing and reading data with less cross talk between multiple memory layers, due to the quadratic dependence of two photon absorption (2PA) on the incident light intensity. The capacity for highly confined excitation and intrinsic 3D resolution affords immense information storage capacity (up to 1012 bits/cm3). Recently, the use of photochromic materials for 3D memory has received intense interest because of several major advantages over current optical systems, including their erasable/rewritable capability, high resolution, and high sensitivity. This work demonstrates a novel two-photon 3D optical storage system based on the modulation of the fluorescence emission of a highly efficient two-photon absorbing fluorescent dye (fluorene derivative) and a photochromic compound (diarylethene). The feasibility of using efficient intermolecular Förster Resonance Energy Transfer (RET) from the non-covalently linked two-photon absorbing fluorescent fluorene derivative to the photochromic diarylethene as a novel read-out method in a two-photon optical data storage system was explored. For the purpose of the development of this novel two-photon 3D optical storage system, linear and two-photon spectroscopic characterization of commercial diarylethenes in solution and in a polymer film and evidence of their cyclization (O→C) and cycloreversion (C→O) reactions induced by two-photon excitation were undertaken. For the development of a readout method, Resonance Energy Transfer (RET) from twophoton absorbing fluorene derivatives to photochromic compounds was investigated under one and two-photon excitation. The Förster's distances and critical acceptor concentrations were determined for non-bound donor-acceptor pairs in homogeneous molecular ensembles. To the best of my knowledge, modulation of the two-photon fluorescence emission of a dye by a photochromic diarylethene has not been reported as a mechanism to read the recorded information in a 3D optical data storage system. This system was demonstrated to be highly stable and suitable for recording data in thick storage media. The proposed RET-based readout method proved to be non-destructive (exhibiting a loss of the initial fluorescence emission less than 20% of the initial emission after 10,000 readout cycles). Potential application of this system in a rewritable-erasable optical data storage system was proved. As part of the strategy for the development of diarylethenes optimized for 3D optical data storage, derivatives containing π-conjugated fluorene molecules were synthesized and characterized. The final part of this reasearch demonstrated the photostability of fluorine derivatives showing strong molecular polarizability and high fluorescence quantum yields. These compounds are quite promising for application in RET-based two-photon 3D optical data storage. Hence, the photostability of these fluorene derivatives is a key parameter to establish, and facilitates their full utility in critical applications.
Show less - Date Issued
- 2007
- Identifier
- CFE0001662, ucf:47210
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001662
- Title
- SINGLET OXYGEN GENERATION USING NEW FLUORENE-BASED PHOTOSENSITIZERS UNDER ONE- AND TWO-PHOTON EXCITATION.
- Creator
-
Andrasik, Stephen, Belfield, Kevin, University of Central Florida
- Abstract / Description
-
Molecular oxygen in its lowest electronically excited state plays an important roll in the field of chemistry. This excited state is often referred to as singlet oxygen and can be generated in a photosensitized process under one- or two-photon excitation of a photosensitizer. It is particularly useful in the field of photodynamic cancer therapy (PDT) where singlet oxygen formation can be used to destroy cancerous tumors. The use of two-photon activated photosensitizers possesses great...
Show moreMolecular oxygen in its lowest electronically excited state plays an important roll in the field of chemistry. This excited state is often referred to as singlet oxygen and can be generated in a photosensitized process under one- or two-photon excitation of a photosensitizer. It is particularly useful in the field of photodynamic cancer therapy (PDT) where singlet oxygen formation can be used to destroy cancerous tumors. The use of two-photon activated photosensitizers possesses great potential in the field of PDT since near-IR light is used to activate the sensitizer, resulting in deeper penetration of light into biological tissue, less photo-bleaching of the sensitizer, and greatly improved resolution of excitation. The synthesis and photophysical characterization of new fluorene-based photosensitizers for efficient singlet oxygen production were investigated. The spectral properties for singlet oxygen production were measured at room temperature and 77 K. Two-photon absorption (2PA) cross-sections of the fluorene derivatives were measured by the open aperture Z-scan method. The quantum yields of singlet oxygen generation under one- and two-photon excitation (ΦΔ and 2PAΦΔ, respectively) were determined by the direct measurement of singlet oxygen luminescence at ≈ 1270 nm. The values of ΦΔ were independent of excitation wavelength, ranging from 0.6 - 0.9. The singlet oxygen quantum yields under two-photon excitation were 2PAΦΔ ≈ ½ΦΔ, indicating that the two processes exhibited the same mechanism of singlet oxygen production, independent of the mechanism of photon absorption.
Show less - Date Issued
- 2007
- Identifier
- CFE0001860, ucf:47411
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001860
- Title
- SYNTHESIS OF NOVEL FLUORENE-BASED TWO-PHOTON ABSORBING MOLECULES AND THEIR APPLICATIONS IN OPTICAL DATA STORAGE, MICROFABRICATION, AND STIMULATED EMISSION DEPLETION.
- Creator
-
Yanez, Ciceron, Belfield, Kevin, University of Central Florida
- Abstract / Description
-
Two-photon absorption (2PA) has been used for a number of scientific and technological applications, exploiting the fact that the 2PA probability is directly proportional to the square of the incident light intensity (while one-photon absorption bears a linear relation to the incident light intensity). This intrinsic property of 2PA leads to 3D spatial localization, important in fields such as optical data storage, fluorescence microscopy, and 3D microfabrication. The spatial confinement that...
Show moreTwo-photon absorption (2PA) has been used for a number of scientific and technological applications, exploiting the fact that the 2PA probability is directly proportional to the square of the incident light intensity (while one-photon absorption bears a linear relation to the incident light intensity). This intrinsic property of 2PA leads to 3D spatial localization, important in fields such as optical data storage, fluorescence microscopy, and 3D microfabrication. The spatial confinement that 2PA enables has been used to induce photochemical and photophysical events in increasingly smaller volumes and allowed nonlinear, 2PA-based, technologies to reach sub-diffraction limit resolutions. The primary focus of this dissertation is the development of novel, efficient 2PA, fluorene-based molecules to be used either as photoacid generators (PAGs) or fluorophores. A second aim is to develop more effective methods of synthesizing these compounds. As a third and final objective, the new molecules were used to develop a write-once-read many (WORM) optical data storage system, and stimulated emission depletion probes for bioimaging. In Chapter I, the microwave-assisted synthesis of triarylsulfonium salt photoacid generators (PAGs) from their diphenyliodonium counterparts is reported. The microwave-assisted synthesis of these novel sulfonium salts afforded reaction times 90 to 420 times faster than conventional thermal conditions, with photoacid quantum yields of new sulfonium PAGs ranging from 0.01 to 0.4. These PAGs were used to develop a fluorescence readout-based, nonlinear three-dimensional (3D) optical data storage system (Chapter II). In this system, writing was achieved by acid generation upon two-photon absorption (2PA) of a PAG (at 710 or 730 nm). Readout was then performed by interrogating two-photon absorbing dyes, after protonation, at 860 nm. Two-photon recording and readout of voxels was demonstrated in five and eight consecutive, crosstalk-free layers within a polymer matrix, generating a data storage capacity of up to 1.8 x 1013 bits/cm3. The possibility of using these PAGs in microfabrication is described in Chapter III, where two-photon induced cationic ring-opening polymerization (CROP) crosslinking of an SU8 resin is employed to produce free-standing microstructures. Chapter IV describes the investigation of one- and two-photon stimulated emission transitions by the fluorescence quenching of a sulfonyl-containing fluorene compound in solution at room temperate using a picosecond pump-probe technique. The nature of stimulated transitions under various fluorescence excitation and quenching conditions were analyzed theoretically, and good agreement with experimental data was demonstrated. Two-photon stimulated transitions S1 to S0 were shown at 1064 nm. The two-photon stimulated emission cross section of the sulfonyl fluorophore was estimated as aproximately 240 - 280 GM, making this compound a good candidate for use in two-photon stimulated emission depletion (STED) microscopy.
Show less - Date Issued
- 2009
- Identifier
- CFE0002913, ucf:48003
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002913
- Title
- In Actu Et In Silicio: Linear and Nonlinear Photophysical Characterization of a Novel Europium Complex, and Incorporating Computational Calculations in the Analysis of Novel Organic Compounds.
- Creator
-
Woodward, Adam, Belfield, Kevin, Campiglia, Andres, Harper, James, Frazer, Andrew, Cheng, Zixi, University of Central Florida
- Abstract / Description
-
Despite not being a tangible substance, light is becoming an increasingly valuable tool in numerous areas of science and technology: the use of laser excitation of a fluorescent probe can generate incredibly detailed images of cellular structures without the need for large amounts of dissection; new types of solar cells are being produced using organic dyes to harvest light; computer data can be stored by inducing a chemical change in a compound through irradiation with light. However, before...
Show moreDespite not being a tangible substance, light is becoming an increasingly valuable tool in numerous areas of science and technology: the use of laser excitation of a fluorescent probe can generate incredibly detailed images of cellular structures without the need for large amounts of dissection; new types of solar cells are being produced using organic dyes to harvest light; computer data can be stored by inducing a chemical change in a compound through irradiation with light. However, before any of these materials can be applied in such a way, their properties must first be analyzed for them to be deemed viable.The focus of this dissertation is the photophysical characterization, linear and nonlinear, of a several novel organic compounds, and a europium complex, as well as using quantum chemical calculation techniques to understand some of the phenomena that are witnessed and begin to develop predictive capability. The nonlinear characterization of compounds utilizes wavelengths outside of their linear absorption range, where a focused beam can achieve the same excitation as one at half the wavelength, though this effect has a quadratic dependence on power.The potential for nonlinear excitation, or two-photon absorption (2PA), is becoming of increasing interest and importance for organic chromophores. Exciting only a small volume of material at a focal point makes it possible to nondestructively image samples in 3-dimensions, record data in multiple layers, and fabricate intricate structures through photopolymerization reactions.Lanthanides such as europium are known to exhibit sharp emission bands when excited, typically through an antenna effect due to the low probability of achieving direct excitation. This emission is long-lived, and through gating systems can readily be separated from background noise and autofluorescence (often observed in biological samples) that have much shorter lifetimes. Thus, one of the foci of this dissertation is the photophysical investigation of a series of novel lanthanide complexes, with particular attention to a europium complex.
Show less - Date Issued
- 2014
- Identifier
- CFE0005908, ucf:50891
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005908
- Title
- Synthesis of Fluorene-based derivatives, Characterization of Optical properties and their Applications in Two-photon Fluorescence Imaging and Photocatalysis.
- Creator
-
Githaiga, Grace, Belfield, Kevin, Patino Marin, Pedro, Chumbimuni Torres, Karin, Zou, Shengli, Cheng, Zixi, University of Central Florida
- Abstract / Description
-
The two-photon absorption (2PA) phenomenon has attracted attention from various fields ranging from chemistry and biology to optics and engineering. Two of the common NLO applications in which organic materials have been used are three-dimensional (3D) fluorescence imaging and optical power limiting. Two-photon absorbing materials are, therefore, in great demand to meet the needs of emerging technologies. Organic molecules show great promise to meet this need as they can be customized through...
Show moreThe two-photon absorption (2PA) phenomenon has attracted attention from various fields ranging from chemistry and biology to optics and engineering. Two of the common NLO applications in which organic materials have been used are three-dimensional (3D) fluorescence imaging and optical power limiting. Two-photon absorbing materials are, therefore, in great demand to meet the needs of emerging technologies. Organic molecules show great promise to meet this need as they can be customized through molecular engineering, and as the development of two-photon materials that suit practical application intensifies, so does research to meet this need. However, there remains some uncertainty in the particulars of design criteria for molecules with large 2PA cross sections at desired wavelengths, as such research to understand structure-property relationships is matter of significant importance. As a result, the full potential of 2PA materials has not been fully exploited. Several strategies to enhance the magnitude and tune the wavelength of 2PA have been reported for ?-conjugated organic molecules. On this account, we have designed novel fluorophores using the fluorene moiety and modified it to tune the properties of the compounds.Chapter 2 of this dissertation reports the successful application of fluorene-based compounds in photocatalysis; a process that involves the decomposition of organic compounds into environmentally friendly carbon dioxide and water attesting to the photostability of the fluorene moiety. A facile organic nanoparticle preparation method is reported in chapter 3 using the reprecipitation method, whose surface was then modified using a naturally occurring surfactant, Lecithin, and were then successfully used in fluorescence cell imaging. Chapter 4 reports the design and synthesis of a fluorene-based compound using an acceptor, s-indacene-1, 3, 5, 7(2H, 6H)-tetra one, or Janus Dione, a moiety that is relatively new and that has not been fully exploited despite its very attractive features. Owing to the hydrophobicity of this compound, notwithstanding its unprecedented 2PA cross section, it was not applicable in fluorescence cell imaging but provided the tenets for the design of related derivative. This limitation was circumvented in the concluding chapter by tuning the compound's hydrophilicity. The hydrophilic Janus dione probe was then used as envisioned for cell imaging as the dual prerequisites for fluorescence imaging probes; large 2PA cross sections and high fluorescence quantum yields were met.
Show less - Date Issued
- 2015
- Identifier
- CFE0005620, ucf:50207
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005620
- Title
- Squaraine dyes, design and synthesis for various functional materials applications.
- Creator
-
Zhang, Yuanwei, Belfield, Kevin, Campiglia, Andres, Zou, Shengli, Frazer, Andrew, Cheng, Zixi, University of Central Florida
- Abstract / Description
-
This dissertation contains the synthesis and characterization of squaraine based new functional materials. In the first part of this thesis work, a water soluble benzothiazolium squaraine dye was synthesized with pyridium pendents, and controlled aggregation properties were achieved. After formation of partially reversible J-aggregation on a polyelectrolyte (poly(acryl acid) sodium salt) template, the nonlinear, two-photon absorption cross section per repeat unit was found to be above 30-fold...
Show moreThis dissertation contains the synthesis and characterization of squaraine based new functional materials. In the first part of this thesis work, a water soluble benzothiazolium squaraine dye was synthesized with pyridium pendents, and controlled aggregation properties were achieved. After formation of partially reversible J-aggregation on a polyelectrolyte (poly(acryl acid) sodium salt) template, the nonlinear, two-photon absorption cross section per repeat unit was found to be above 30-fold enhanced compared with nonaggregate and/or low aggregates. Using a similar strategy, sulfonate anions were introduced into the squaraine structure, and the resulting compounds exhibited good water solubilities. A 'turn on' fluorescence was discovered when these squaraine dyes interacted with bovine serum albumin (BSA), titration studies by BSA site selective reagents show these squaraine dyes can bind to both site I and II of BSA, with a preference of site II. Introduction of these squaraine dyes to BSA nanoparticles generated near-IR protein nano fabricates, and cell images were collected. Metal sensing properties were also studied using the sulfonates containing a benzoindolium squaraine dye, and the linear response of the absorption of the squaraine dye to the concentration of Hg2+ makes it a good heavy metal-selective sensing material that can be carried out in aqueous solution. Later, a squaraine scaffold was attached to deoxyribonucleosides by Sonogashira coupling reactions, in which the reaction conditions were modified. Iodo-deoxyuridine and bromo-deoxyadenosine were used as the deoxyribonucleosides building blocks, and the resulting squaraine dye-modified deoxyribonucleosides exhibited near-IR absorption and emission properties due to the squaraine chromophore. Interestingly, these non-natural deoxyribonucleosdies showed viscosity dependent photophysical properties, which make them nice candidates for fluorescence viscosity sensors at the cellular level. After incubation with cells, these viscosity sensors were readily uptaken by cell, and images were obtained showing regions of high viscosity in cells.
Show less - Date Issued
- 2013
- Identifier
- CFE0005451, ucf:50369
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005451
- Title
- EXPERIMENTAL AND THEORETICAL STUDY OF THE OPTICAL PROPERTIES OF SEMICONDUCTOR QUANTUM DOTS.
- Creator
-
Nootz, Gero, Cuenya , Beatriz, University of Central Florida
- Abstract / Description
-
The aim of this dissertation is to gain a better understanding of the unique electronic structure of lead salt quantum dots (QDs) and its influences on the nonlinear optical (NLO) properties as well as the time dynamics of the photogenerated charge carriers. A variety of optical techniques such as Z-scan, two-photon excited fluorescence and time-resolved pump probe spectroscopy are used to measure these properties. The one-photon as well as the degenerate and nondegenerate two-photon...
Show moreThe aim of this dissertation is to gain a better understanding of the unique electronic structure of lead salt quantum dots (QDs) and its influences on the nonlinear optical (NLO) properties as well as the time dynamics of the photogenerated charge carriers. A variety of optical techniques such as Z-scan, two-photon excited fluorescence and time-resolved pump probe spectroscopy are used to measure these properties. The one-photon as well as the degenerate and nondegenerate two-photon absorption (2PA) spectra are measured and the electronic wave functions from a four-band envelope function formalism are used to model the results. We observe local maxima in the 2PA spectra for QD samples of many different sizes at energies where only 1PA is predicted by the model. This is similar to the previously measured transitions in the 1PA spectra which are not predicted by the model but accrue at the energies of the two-photon allowed transitions. Most importantly we observe 2PA peaks for all samples at the energy of the first one-photon allowed transition. This result can only be understood in terms of symmetry breaking and therefore is strong evidence that other transitions, not predicted by the model if the selection rules are left intact, also have the origin in the lifted spatial symmetry of the wave functions. On the other hand, the uniquely symmetric eigenenergies of these quantum-confined energy states in the conduction and valance bands explain the observed trend toward larger two-photon cross-sections as the quantum confinement is increased in smaller QDs. Moreover, this unique feature is shown to reduce the possible relaxation channels for photoexcited carriers, which is confirmed experimentally by the reduced carrier relaxation rate as compared to CdSe QDs which lack this symmetry. Carrier multiplication (CM), a process in which several electrons are excited by the absorption of a single photon is studied in PbS QDs. We show that for PbS QDs with radius smaller than 2.5 nm the parameters of CM get very close to the theoretical optimum. Next-generation solar cells operating under these ideal conditions could potentially have conversion efficiency of up to 42%. This compares favorably to the 30% efficiency limit of a single junction silicon solar cell.
Show less - Date Issued
- 2010
- Identifier
- CFE0003396, ucf:48413
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003396
- Title
- Synthesis and Characterization of New Probes for use in Fluorescence and X-ray CT Bioimaging.
- Creator
-
Tang, Simon, Belfield, Kevin, Miles, Delbert, Campiglia, Andres, Zou, Shengli, Cheng, Zixi, University of Central Florida
- Abstract / Description
-
The pursuit of more suitable drugs intended for possible biological applications are a continuously growing topic of research within the scientific community. One of these suitable qualities includes the need for hydrophilicity and or some appropriate delivery system for the drug to enter into biological systems. A system of analyzing and following these compounds would then, however, be necessary to conduct any kind of mechanistic or interaction studies for he said drug within the biological...
Show moreThe pursuit of more suitable drugs intended for possible biological applications are a continuously growing topic of research within the scientific community. One of these suitable qualities includes the need for hydrophilicity and or some appropriate delivery system for the drug to enter into biological systems. A system of analyzing and following these compounds would then, however, be necessary to conduct any kind of mechanistic or interaction studies for he said drug within the biological system. Just to name a few, fluorescence and X-ray computed tomography (CT) methods allow for imaging of biological systems but require the need of compounds with specific qualities. Finally, even with a means of entering and following a oaded drug, it would not be complete without a way of targeting its intended location. Herein, the first chapter reports the synthesis and characterization of a fluorene-based pyridil bis-?-diketone compound with suitable one- and two-photon fluorescent properties and its encapsulation into Pluronic F127 micelles for the possible application of tracking lysosomes. Next the synthesis and characterization of a BODIPY-based fluorophore with excellent fluorescence ability is reported. This compound was conjugated to two triphenylphosphine (TPP) groups and is shown as a potential mitochondria probe within HCT-116 cells. Finally, the synthesis and characterization of diatrizoic acid (DA) based derivatives conjugated to silica nanoparticles, as well as unconjugated, are reported as potential CT contrast agents. The derivatives were also functionalized with maleimide moieties facilitating subsequent potential bioconjugation of a targeting protein via a thiol group.
Show less - Date Issued
- 2015
- Identifier
- CFE0006056, ucf:50961
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006056