Current Search: volatile fatty acids (x)
View All Items
- Title
- Optimization of Glycerol or Biodiesel Waste Prefermentation to Improve EBPR.
- Creator
-
Ghasemi, Marzieh, Randall, Andrew, Duranceau, Steven, Lee, Woo Hyoung, Jimenez, Jose, University of Central Florida
- Abstract / Description
-
The enhanced biological phosphorus removal (EBPR) process efficiency relies on different operational and process conditions especially the type of carbon source available in the wastewater. Acetic acid and propionic acid are the two major volatile fatty acids (VFAs) found in domestic wastewater which can drive biological phosphorus (P) removal to the desired level. However, often domestic wastewater does not have a sufficient amount of VFAs. Due to high acetate and propionate production-cost,...
Show moreThe enhanced biological phosphorus removal (EBPR) process efficiency relies on different operational and process conditions especially the type of carbon source available in the wastewater. Acetic acid and propionic acid are the two major volatile fatty acids (VFAs) found in domestic wastewater which can drive biological phosphorus (P) removal to the desired level. However, often domestic wastewater does not have a sufficient amount of VFAs. Due to high acetate and propionate production-cost, it is not economic to add acetate and propionate directly in full-scale wastewater treatment plants. This brought up the idea of using external carbon sources (e. g. molasses has been used successfully) in EBPR systems that can be converted to VFAs through a fermentation process. On the other hand, biodiesel fuels have been produced increasingly over the last decade. Crude glycerol is a biodiesel production major by-product that can be used as an external carbon source in wastewater treatment plant. Therefore, the main objective of this research is to optimize the glycerol/biodiesel waste fermentation process' operational conditions in pursuit of producing more favorable fermentation end-products (i. e. a mixture of acetic acid and propionic acid) by adding glycerol to a prefermenter versus direct addition to the anaerobic zone or fermentation with waste activated sludge. For this reason, different prefermenter parameters namely: mixing intensity, pH, temperature and solids retention time (SRT), were studied in a small scale fermentation media (serum bottles) and bench scale semi-continuous batch prefermenters. Experimental results revealed that glycerol/biodiesel waste fermentation resulted in a significant amount of VFAs production with propionic acid as the superior end-product followed by acetic acid and butyric acid. The VFA production was at its highest level when the initial pH was adjusted to 7 and 8.5. However, the optimum pH with respect to propionic acid production was 7. Increasing the temperature in serum bottles favored the total VFA production, specifically in the form of propionic acid. Regarding the mixing energy inconsistent results were obtained in the serum bottles compared to the bench scale prefermenters. The VFA production in mixed serum bottles at 200 rpm was higher than that of un-mixed ones. On the other hand, the unmixed or slowly mixed bench scale prefermenters showed higher VFA production than the mixed reactors. However, the serum bottles did not operate long enough to account for biomass acclimation and other long-term effects that the prefermenter experiments could account for. As a consequence one of the most important and consistently results was that VFA production was significantly enhanced by reducing mixing intensity from 100 rpm to 7 rpm and even ceasing mixing all together. This was true both for primary solids and glycerol. In addition propionate content was high under both high and low intensity, and adding glycerol also increased the fraction of primary solids that formed propionic acid instead of acetic acid. Increasing the SRT from 2 to 4 days increased the VFA production about 12% on average. In order to investigate the effect of glycerol on EBPR process efficiency two identical A2/O systems were monitored for 3 months. Experimental results suggested that glycerol addition could increase the P removal efficiency significantly. Adding glycerol to the prefermenter rather than the anaerobic zone resulted in a lower effluent soluble ortho phosphorus (SOP) (0.4 mg-P/L vs. 0.6 mg-P/L) but the difference was apparently statistically significant. Future experimentation should be done to determine if this effect is consistent, especially in carbon poor wastewaters. Also it would be desirable to conduct a longer pilot study or a full scale study to determine if this improvement in effluent SOP remains true over a range of temperature and changing influent conditions.
Show less - Date Issued
- 2015
- Identifier
- CFE0006310, ucf:51612
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006310
- Title
- Biological Nutrient Removal (BNR) Process Optimization and Recovery of Embedded Energy Using Biodiesel By-product.
- Creator
-
Salamah, Sultan, Randall, Andrew, Duranceau, Steven, Chopra, Manoj, University of Central Florida
- Abstract / Description
-
Enhanced biological phosphorus removal (EBPR) as well as biological nitrogen removal require a carbon source to be carried out. Volatile fatty acid (VFAs) (mainly acetic and propionic acids) are the major driving force for EBPR. Many domestic wastewaters have an insufficient amount of VFAs. However, carbon sources such as acetic and propionic acids can be produced using primary solids fermentation process. Due to the cost of VFA production, an external carbon source can be added to the...
Show moreEnhanced biological phosphorus removal (EBPR) as well as biological nitrogen removal require a carbon source to be carried out. Volatile fatty acid (VFAs) (mainly acetic and propionic acids) are the major driving force for EBPR. Many domestic wastewaters have an insufficient amount of VFAs. However, carbon sources such as acetic and propionic acids can be produced using primary solids fermentation process. Due to the cost of VFA production, an external carbon source can be added to the biological nutrient removal (BNR) system that can be fermented to provide the desired VFAs. Glycerol (biodiesel by-product) offers a solution to reduce carbon addition cost if can be fermented to acetic and propionic acid or can be used directly as an external carbon substrate for EBPR and denitrification. Using glycerol in wastewater treatment can also offset the biodiesel plant disposal cost and reduce the BNR chemical cost. The main objective of this study was to optimize the prefermentation process and optimize the BNR system using glycerol as an external carbon source. In this work, Optimization of the prefermentation process using glycerol, mixing, and hydrogen gas addition was evaluated. EBPR performance within an A2O-BNR system was evaluated using either a direct glycerol method to the anaerobic zone or by co-fermentation with primary solids. Also, optimization of the nitrogen removal (specifically denitrification) efficiency of a 5-stage BardenphoTM BNR system using either a direct glycerol method to the second anoxic zone or by co-fermentation with primary solids was evaluated. It was found in this study that glycerol was an efficient external carbon substrate for EBPR as well as biological nitrogen removal. The prefermentation experiment showed that glycerol co-fermentation with primary solids produced significantly higher (p(<)0.05) VFAs than primary solids fermentation alone, even more than the possible value from the added glycerol (427 mg-COD/L). The increased VFAs imply that the glycerol addition stimulated additional fermentation of primary solids. Lowering the prefermenter mixing energy (50 to 7 rpm) resulted in a significant increase in VFAs production (80%). Also, purging the headspace of the prefermenter with hydrogen gas did not lead to more VFAs, but significantly (p(<)0.05) increased the propionic acid to acetic acid ratio by 41%. In the A2O-BNR pilot plant experiment, it was found that glycerol is a suitable renewable external substrate to drive enhanced EBPR as well as denitrification. The results from both locations of glycerol addition (direct vs. fermented) were beneficial to the BNR system. Both systems had similar effluent quality and achieved total nitrogen (TN) and total phosphorus (TP) removals up to 86% and 92% respectively. The 5-stage BardenphoTM BNR experiment investigated the location of glycerol addition (direct vs. fermented) on the performance of denitrification in the second anoxic zone and the overall performance. The results from both systems were that glycerol was beneficial to the BNR system and had virtually similar effluent quality. Both systems achieve complete denitrification and excellent removal of TN and TP up to 95% and 89% respectively. Also, the pilot that received fermented glycerol had significantly higher VFAs loading and lower observed yield. The side-stream prefermenter effluent flowing to the second anoxic reactor did not cause high effluent ammonia (NH3) concentration. In summary, the location at which glycerol was added did not affect effluent quality for nitrogen and phosphorus. However, glycerol addition and mixing energy did impact prefermenter performance and effluent quality.
Show less - Date Issued
- 2017
- Identifier
- CFE0006788, ucf:51826
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006788