Current Search: zinc ion sensing probe (x)
View All Items
- Title
- DESIGN, SYNTHESIS, AND CHARACTERIZATION OF NOVEL HYDROPHILIC FLUORENE-BASED DERIVATIVES FOR BIOIMAGING APPLICATIONS.
- Creator
-
Nguyen, Dao, Belfield, Kevin, University of Central Florida
- Abstract / Description
-
In this work, hydrophilic fluorene-based derivatives that contain ethylene oxide substituents, have been synthesized and characterized for potential use as new fluorophores for bioimaging applications and for fluorescence sensing of heavy metals. Symmetrical and unsymmetrical fluorene derivatives based on structural types of acceptor-pi-acceptor, acceptor-pi-donor, and donor-pi-donor were characterized by TGA, UV-vis absorption, fluorescence emission, lifetime, anisotropy, and two-photon...
Show moreIn this work, hydrophilic fluorene-based derivatives that contain ethylene oxide substituents, have been synthesized and characterized for potential use as new fluorophores for bioimaging applications and for fluorescence sensing of heavy metals. Symmetrical and unsymmetrical fluorene derivatives based on structural types of acceptor-pi-acceptor, acceptor-pi-donor, and donor-pi-donor were characterized by TGA, UV-vis absorption, fluorescence emission, lifetime, anisotropy, and two-photon absorption (2PA) cross section. They were found to possess high thermal stability, high photostability, high fluorescence quantum yields, and generally large two-photon absorption cross sections, making them quite suitable for new probes in single-photon absorption and two-photon absorption fluorescence microscopy imaging. Novel hydrophilic fluorene derivatives were synthesized from fluorene in multiple steps employing the metal-catalyzed Heck coupling reaction, the Stille reaction, the Sonogashira reaction, the Ullmann condensation reaction, and "click" chemistry. To increase the hydrophilicity of the new compounds, ethylene oxide substituents were utilized for to impart water solubility. An alternative alkylation methodology using ethyleneoxy tosylates was introduced for the synthesis of ethylene oxide-containing fluorene derivatives. Several of these hydrophilic derivatives were incubated into various cell lines as new probes for both conventional and two-photon absorption fluorescence bioimaging. These compounds were biocompatible, exhibiting low cytotoxicity as determined by cell viability studies, and displayed colocalization for selected cellular organelles. In addition, hydrophilic bis(1,2,3-triazolyl)fluorene derivatives were found to exhibit sensitive fluorescence responses in the presence of certain heavy metal, and were selective for sensing zinc and mercury over other a number of other metal ions relevant to living cells or other biological environments. The UV-vis absorption and fluorescence emission spectra of the complexes exhibited a blue-shifted absorption and emission for selective metal chelation upon binding to zinc and mercury(II) ions, resulting in an approximately two-fold enhanced fluorescence response. Fluorescence titration studies revealed that the complexes of 1:2 and 1:3 ligand to metal formed with binding constant values of 108 and 1014 for zinc and mercury ions, respectively. Finally, preliminary experiments were performed to explore the possibility of employing select hydrophilic fluorene-based derivatives in the synthesis of hydrophilic fluorescent gold nanoparticles. Although results are very preliminary, the aim is to use such materials for other biomedical applications, such as surface enhanced scattering resonance and noninvasive photothermal therapy to diagnose and to treat cancers. Thus, this research had led to the discovery of alternative methodologies for synthesis of hydrophilic fluorene derivatives by alkylation with alkyl tosylates and synthesis of hydrophilic fluorescent molecule capped gold nanoparticles. Furthermore, several novel hydrophilic fluorene-based derivatives were synthesized and characterized for their linear and nonlinear photophysical properties, and are now available for further examination of their bioimaging and sensing applications.
Show less - Date Issued
- 2009
- Identifier
- CFE0002930, ucf:48002
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002930
- Title
- THE APPLICATION OF TWO-PHOTON ABSORBING PROBES IN LYSOSOMAL, ZINC ION SENSING AND FOLATE RECEPTOR-TARGETED BIOIMAGING.
- Creator
-
WANG, XUHUA, Belfield, Kevin D., University of Central Florida
- Abstract / Description
-
Two-photon fluorescence microscopy (2PFM) has become a powerful technique for bioimaging in non-invasive cancer diagnosis and also investigating the mechanization and original of a variety of diseases by tracking various biological processes. Because the fluorescence emission by two photon absorbing (2PA) is directly proportional to the square of the intensity of excitation light, this intrinsic property of 2PA provides 2PFM great advantages over traditional one-photon fluorescence microscopy...
Show moreTwo-photon fluorescence microscopy (2PFM) has become a powerful technique for bioimaging in non-invasive cancer diagnosis and also investigating the mechanization and original of a variety of diseases by tracking various biological processes. Because the fluorescence emission by two photon absorbing (2PA) is directly proportional to the square of the intensity of excitation light, this intrinsic property of 2PA provides 2PFM great advantages over traditional one-photon fluorescence microscopy (1PFM), including high 3D spatial localization, less photodamage and interference from biological tissue because of using longer wavelength excitation (700-1300 nm). However, most 2PA probes are hydrophobic and their photostabilities are questionable, severely limiting their biological and medical applications. In addition, probes with significant specificity for certain organelles for tracking cellular processes or metal ions for monitoring neural transmission are somewhat rare. Moreover, it is also very significant to deliver the probes to specific disease sites for early cancer diagnosis. In order to increase the water solubility of probes, polyethylene glycol (PEG) was introduced to a fluorene-based 2PA probe LT1 for lysosomal 2PFM cell imaging. The 2PFM bioimaging application of the novel two-photon absorbing fluorene derivative LT1, selective for the lysosomes of HCT 116 cancer cells is described in Chapter II. Linear and nonlinear photophysical and photochemical properties of the probe were investigated to evaluate the potential of the probe for 2PFM lysosomal imaging. After the investigation of the cytotoxicity of this new probe, colocalization studies of the probe with commercial lysosomal probe Lysotracker Red in HCT 116 cells were conducted. A high colocalization coefficient (0.96) was achieved and demonstrated the specific localization of the probe in lysosomes. A figure of merit, FM, was introduced by which all fluorescent probes for 2PFM can be compared. LT1 was demonstrated to have a number of properties that far exceed those of commercial lysotracker probes, including much higher 2PA cross sections, good fluorescence quantum yield, and, importantly, high photostability, all resulting in a superior figure of merit. Consequently, 2PFM was used to demonstrate lysosomal tracking with LT1. In addition to lysosomes, it is also very significant to investigate the physiological roles of free metal ions in biological processes, especially Zn2+, because Zn2+ normally serves either as the catalytic elements in enzymatic activity centers or as structural elements in enzymes and transcription factors. However, biocompatible and effective Zn2+ probes for 2PFM bioimaging are infrequent. In Chapter III, 2PFM bioimaging with a hydrophilic 2PA Zn2+ sensing fluorescent probe, bis(1,2,3-triazolyl)fluorene derivative, is described. 2PFM bioimaging of the probe in living HeLa cancer cells was demonstrated. The results revealed a significant fluorescence increase upon introduction of Zn2+ into the cancer cells, and a reversible Zn2+ binding to the probe was also demonstrated, providing a robust probe for two-photon fluorescence zinc ion sensing. Early cancer diagnosis is another critical application for 2PFM, but there are still huge challenges for this new technique in clinical areas. Most 2PA probes with large two-photon absorbing cross sections and fluorescence quantum efficiency are synthetically more accessible in hydrophobic forms. In order to increase the efficiency of the probes and minimize the effect of the probe on the human body, delivery of the probe specifically to cancer sites is desired. The synthesis and characterization of narrow dispersity organically modified silica nanoparticles (SiNPs), diameter ~30 nm, entrapping a hydrophobic two-photon absorbing fluorenyl dye, are reported in Chapter IV. The surface of the SiNPs was functionalized with folic acid to specifically deliver the probe to folate receptor (FR) over-expressing HeLa cells, making these folate 2PA dye-doped SiNPs potential candidates as probes for two-photon fluorescence microscopy (2PFM) bioimaging. In vitro studies using FR over-expressing HeLa cells demonstrated specific cellular uptake of the functionalized nanoparticles. However, when the concentration of the dye in SiNPs increased for higher signal output, the fluorescence quantum efficiency of a probe normally decreases because of self-quenching. In Chapter V, a near-infrared (NIR) emitting probe is reported to overcome this limitation through both aggregate-enhanced fluorescence emission and aggregate enhanced two-photon absorption. The dye was encapsulated in SiNPs and the surface of the nanoparticles was functionalized with PEG followed by a folic acid derivative to specifically target folate receptors. NIR emission is important for deep tissue imaging. In vitro studies using HeLa cells that upregulate folate receptors indicated specific cellular uptake of the folic acid functionalized SiNP nanoprobe. Meanwhile, the probe was also investigated for live animal imaging by employing mice bearing HeLa tumors for in vivo studies. Ex vivo 2PFM tumor imaging was then conducted to achieve high quality 3D thick tissue tumor images.
Show less - Date Issued
- 2011
- Identifier
- CFE0003640, ucf:48891
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003640